Properties

Label 8-3072e4-1.1-c1e4-0-1
Degree $8$
Conductor $8.906\times 10^{13}$
Sign $1$
Analytic cond. $362070.$
Root an. cond. $4.95278$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s − 24·17-s + 20·25-s + 24·41-s − 24·49-s + 3·81-s − 24·89-s − 48·97-s − 24·113-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 48·153-s + 157-s + 163-s + 167-s + 48·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  − 2/3·9-s − 5.82·17-s + 4·25-s + 3.74·41-s − 3.42·49-s + 1/3·81-s − 2.54·89-s − 4.87·97-s − 2.25·113-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 3.88·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{40} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(362070.\)
Root analytic conductor: \(4.95278\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{40} \cdot 3^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.526407971\)
\(L(\frac12)\) \(\approx\) \(1.526407971\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$C_2$ \( ( 1 - p T^{2} )^{4} \)
7$C_2^2$ \( ( 1 + 12 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 24 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 60 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 24 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{4} \)
61$C_2^2$ \( ( 1 - 72 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 156 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.32795152709152376496503148672, −5.98975169266293578725729303150, −5.79024754387510605379696188808, −5.62526961381169072793773373830, −5.31395498027439616614026610426, −5.07300400569847056263394025325, −4.86464752291098193374799709576, −4.60123258485999828188728030835, −4.47685898806043931163223850136, −4.41503864359937703931414464297, −4.25882852792449715463878995562, −4.07936923970635971950703734797, −3.74104443628685192992003923582, −3.24001953078518237532610773919, −3.09061510428590603142983242932, −2.73667264220938017123003260660, −2.72438191421909186405267718005, −2.70944622361400824579772991400, −2.16158226783656086960862977224, −1.97040003953426461633677681274, −1.84107720991729302405582399393, −1.32588051780252714806230688703, −1.02287981619619312505588935403, −0.48101021454616031929391924967, −0.28339864770998730113055690983, 0.28339864770998730113055690983, 0.48101021454616031929391924967, 1.02287981619619312505588935403, 1.32588051780252714806230688703, 1.84107720991729302405582399393, 1.97040003953426461633677681274, 2.16158226783656086960862977224, 2.70944622361400824579772991400, 2.72438191421909186405267718005, 2.73667264220938017123003260660, 3.09061510428590603142983242932, 3.24001953078518237532610773919, 3.74104443628685192992003923582, 4.07936923970635971950703734797, 4.25882852792449715463878995562, 4.41503864359937703931414464297, 4.47685898806043931163223850136, 4.60123258485999828188728030835, 4.86464752291098193374799709576, 5.07300400569847056263394025325, 5.31395498027439616614026610426, 5.62526961381169072793773373830, 5.79024754387510605379696188808, 5.98975169266293578725729303150, 6.32795152709152376496503148672

Graph of the $Z$-function along the critical line