Properties

Label 8-3072e4-1.1-c1e4-0-7
Degree $8$
Conductor $8.906\times 10^{13}$
Sign $1$
Analytic cond. $362070.$
Root an. cond. $4.95278$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 10·9-s + 8·11-s − 8·17-s − 8·19-s + 20·27-s + 32·33-s + 8·41-s + 24·43-s − 4·49-s − 32·51-s − 32·57-s + 48·67-s − 24·73-s + 35·81-s − 8·83-s − 40·89-s − 16·97-s + 80·99-s + 32·107-s − 8·113-s + 36·121-s + 32·123-s + 127-s + 96·129-s + 131-s + 137-s + ⋯
L(s)  = 1  + 2.30·3-s + 10/3·9-s + 2.41·11-s − 1.94·17-s − 1.83·19-s + 3.84·27-s + 5.57·33-s + 1.24·41-s + 3.65·43-s − 4/7·49-s − 4.48·51-s − 4.23·57-s + 5.86·67-s − 2.80·73-s + 35/9·81-s − 0.878·83-s − 4.23·89-s − 1.62·97-s + 8.04·99-s + 3.09·107-s − 0.752·113-s + 3.27·121-s + 2.88·123-s + 0.0887·127-s + 8.45·129-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{40} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(362070.\)
Root analytic conductor: \(4.95278\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{40} \cdot 3^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(16.06813385\)
\(L(\frac12)\) \(\approx\) \(16.06813385\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{4} \)
good5$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 + 4 T^{2} + 22 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
11$C_4$ \( ( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 24 T^{2} + p^{2} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 + 80 T^{2} + 2962 T^{4} + 80 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 + 4 T^{2} - 74 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 + 32 T^{2} + 114 T^{4} + 32 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 4 T + 66 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 12 T + 102 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$D_4\times C_2$ \( 1 + 48 T^{2} + 3314 T^{4} + 48 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 + 128 T^{2} + 8658 T^{4} + 128 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
71$D_4\times C_2$ \( 1 + 188 T^{2} + 17638 T^{4} + 188 p^{2} T^{6} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 12 T + 102 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 + 260 T^{2} + 28662 T^{4} + 260 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 + 4 T + 150 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
97$D_{4}$ \( ( 1 + 8 T + 130 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.29756102179574667615210429387, −5.87386447699301822609986216269, −5.69246641488014104716292947345, −5.67995418562427987600867370592, −5.66946054496783088609642736698, −4.84381195408923648268449314870, −4.77763655895573287619933819692, −4.58947500203371519272038907622, −4.29451632163815742387043741432, −4.23312658390905247393341042548, −3.99948753103343983426563002597, −3.97275163145043905964329358111, −3.83674516681170750904735836126, −3.40468603912596007378707164479, −3.13630051986624178903541571163, −2.96282212973609135692457227542, −2.64777224013084646246781026595, −2.43396122023279445965090836283, −2.14656754034713115355310412126, −2.11107528956419902792577627896, −1.86632529778747746872437235824, −1.36675926702826513573526540961, −1.27215684959203948349697707972, −0.76530466628735849695128019441, −0.46635298350904294158324033656, 0.46635298350904294158324033656, 0.76530466628735849695128019441, 1.27215684959203948349697707972, 1.36675926702826513573526540961, 1.86632529778747746872437235824, 2.11107528956419902792577627896, 2.14656754034713115355310412126, 2.43396122023279445965090836283, 2.64777224013084646246781026595, 2.96282212973609135692457227542, 3.13630051986624178903541571163, 3.40468603912596007378707164479, 3.83674516681170750904735836126, 3.97275163145043905964329358111, 3.99948753103343983426563002597, 4.23312658390905247393341042548, 4.29451632163815742387043741432, 4.58947500203371519272038907622, 4.77763655895573287619933819692, 4.84381195408923648268449314870, 5.66946054496783088609642736698, 5.67995418562427987600867370592, 5.69246641488014104716292947345, 5.87386447699301822609986216269, 6.29756102179574667615210429387

Graph of the $Z$-function along the critical line