Properties

Label 12-3042e6-1.1-c1e6-0-2
Degree $12$
Conductor $7.924\times 10^{20}$
Sign $1$
Analytic cond. $2.05408\times 10^{8}$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s + 6·16-s + 10·17-s + 10·25-s + 20·29-s − 22·43-s + 18·49-s − 8·61-s − 10·64-s − 30·68-s − 36·79-s − 30·100-s + 12·101-s − 60·103-s − 2·107-s − 6·113-s − 60·116-s + 49·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 3/2·4-s + 3/2·16-s + 2.42·17-s + 2·25-s + 3.71·29-s − 3.35·43-s + 18/7·49-s − 1.02·61-s − 5/4·64-s − 3.63·68-s − 4.05·79-s − 3·100-s + 1.19·101-s − 5.91·103-s − 0.193·107-s − 0.564·113-s − 5.57·116-s + 4.45·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{12} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{12} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 3^{12} \cdot 13^{12}\)
Sign: $1$
Analytic conductor: \(2.05408\times 10^{8}\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 3^{12} \cdot 13^{12} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.292216134\)
\(L(\frac12)\) \(\approx\) \(6.292216134\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T^{2} )^{3} \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2 p T^{2} + 71 T^{4} - 396 T^{6} + 71 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \)
7 \( 1 - 18 T^{2} + 143 T^{4} - 860 T^{6} + 143 p^{2} T^{8} - 18 p^{4} T^{10} + p^{6} T^{12} \)
11 \( 1 - 49 T^{2} + 1161 T^{4} - 16177 T^{6} + 1161 p^{2} T^{8} - 49 p^{4} T^{10} + p^{6} T^{12} \)
17 \( ( 1 - 5 T + 29 T^{2} - 73 T^{3} + 29 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
19 \( 1 - 81 T^{2} + 3137 T^{4} - 74273 T^{6} + 3137 p^{2} T^{8} - 81 p^{4} T^{10} + p^{6} T^{12} \)
23 \( ( 1 + 41 T^{2} + 56 T^{3} + 41 p T^{4} + p^{3} T^{6} )^{2} \)
29 \( ( 1 - 10 T + 83 T^{2} - 476 T^{3} + 83 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( 1 - 82 T^{2} + 3967 T^{4} - 137116 T^{6} + 3967 p^{2} T^{8} - 82 p^{4} T^{10} + p^{6} T^{12} \)
37 \( 1 - 138 T^{2} + 9671 T^{4} - 435980 T^{6} + 9671 p^{2} T^{8} - 138 p^{4} T^{10} + p^{6} T^{12} \)
41 \( 1 - 169 T^{2} + 14057 T^{4} - 714057 T^{6} + 14057 p^{2} T^{8} - 169 p^{4} T^{10} + p^{6} T^{12} \)
43 \( ( 1 + 11 T + 125 T^{2} + 945 T^{3} + 125 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 - 206 T^{2} + 20175 T^{4} - 1193924 T^{6} + 20175 p^{2} T^{8} - 206 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 + 131 T^{2} + 56 T^{3} + 131 p T^{4} + p^{3} T^{6} )^{2} \)
59 \( 1 - 225 T^{2} + 24609 T^{4} - 1732041 T^{6} + 24609 p^{2} T^{8} - 225 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 + 4 T + 39 T^{2} + 424 T^{3} + 39 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 129 T^{2} + 13281 T^{4} - 1140649 T^{6} + 13281 p^{2} T^{8} - 129 p^{4} T^{10} + p^{6} T^{12} \)
71 \( 1 - 322 T^{2} + 46287 T^{4} - 4042108 T^{6} + 46287 p^{2} T^{8} - 322 p^{4} T^{10} + p^{6} T^{12} \)
73 \( 1 - 265 T^{2} + 36313 T^{4} - 3192361 T^{6} + 36313 p^{2} T^{8} - 265 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 18 T + 261 T^{2} + 2612 T^{3} + 261 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 465 T^{2} + 92609 T^{4} - 10109729 T^{6} + 92609 p^{2} T^{8} - 465 p^{4} T^{10} + p^{6} T^{12} \)
89 \( 1 - 97 T^{2} + 9929 T^{4} - 1067577 T^{6} + 9929 p^{2} T^{8} - 97 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 - 177 T^{2} + 28457 T^{4} - 3235529 T^{6} + 28457 p^{2} T^{8} - 177 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.53716738054647788713314899516, −4.47521823440233855903545188470, −4.29389173115548140476434215572, −4.24221186335182560746845484676, −3.83055234760991215357577854435, −3.76811823269179366126800043675, −3.74018401203051118316850230193, −3.30577722963224612401676361697, −3.25116414327503666337515873788, −3.07393260532965826517525980992, −3.06802906373950058718836532445, −3.05021499734504841889550861221, −2.86602282529951307294569035982, −2.56514887054693975881165220339, −2.35101548620972613679528606088, −2.28524599997780949380412394376, −1.91875289099882913266206295708, −1.54821710628673489351598543893, −1.52036336273837836761353273915, −1.41740438803720495397971582615, −1.15070178773017464160242653461, −0.974508859045010877982372206664, −0.62990410583433074933006344720, −0.57759996020165181220393368902, −0.32232188984465835106850935419, 0.32232188984465835106850935419, 0.57759996020165181220393368902, 0.62990410583433074933006344720, 0.974508859045010877982372206664, 1.15070178773017464160242653461, 1.41740438803720495397971582615, 1.52036336273837836761353273915, 1.54821710628673489351598543893, 1.91875289099882913266206295708, 2.28524599997780949380412394376, 2.35101548620972613679528606088, 2.56514887054693975881165220339, 2.86602282529951307294569035982, 3.05021499734504841889550861221, 3.06802906373950058718836532445, 3.07393260532965826517525980992, 3.25116414327503666337515873788, 3.30577722963224612401676361697, 3.74018401203051118316850230193, 3.76811823269179366126800043675, 3.83055234760991215357577854435, 4.24221186335182560746845484676, 4.29389173115548140476434215572, 4.47521823440233855903545188470, 4.53716738054647788713314899516

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.