Properties

Label 8-3042e4-1.1-c1e4-0-3
Degree $8$
Conductor $8.563\times 10^{13}$
Sign $1$
Analytic cond. $348133.$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·16-s − 12·23-s + 14·25-s + 12·29-s − 4·43-s + 4·49-s − 12·53-s + 40·61-s − 4·64-s − 8·79-s + 24·92-s − 28·100-s + 36·101-s − 4·103-s − 12·107-s − 24·113-s − 24·116-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  − 4-s + 3/4·16-s − 2.50·23-s + 14/5·25-s + 2.22·29-s − 0.609·43-s + 4/7·49-s − 1.64·53-s + 5.12·61-s − 1/2·64-s − 0.900·79-s + 2.50·92-s − 2.79·100-s + 3.58·101-s − 0.394·103-s − 1.16·107-s − 2.25·113-s − 2.22·116-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(348133.\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.481349028\)
\(L(\frac12)\) \(\approx\) \(2.481349028\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
13 \( 1 \)
good5$C_2^2$ \( ( 1 - 7 T^{2} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 4 T^{2} - 6 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 - 20 T^{2} + 234 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 52 T^{2} + 1290 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
31$D_4\times C_2$ \( 1 - 28 T^{2} + 390 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 - 65 T^{2} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 122 T^{2} + 6651 T^{4} - 122 p^{2} T^{6} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 + 2 T + 60 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 164 T^{2} + 11034 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 20 T + 195 T^{2} - 20 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 100 T^{2} + 10506 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 212 T^{2} + 20346 T^{4} - 212 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 + T^{2} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 164 T^{2} + 17802 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 260 T^{2} + 31014 T^{4} - 260 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 - 158 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.23219618402024318917055737516, −5.94968681617951073683584634279, −5.71791356953175737763660379785, −5.61531728575718966664116971954, −5.15967365969020026069904649934, −5.10717238815327686419250091804, −5.07554022201380351734413285253, −4.66487284234912939850531083849, −4.60839319173876106184715581880, −4.38386767823403846317582874454, −4.11283763399458967427802181847, −3.82078439526043869015774741772, −3.76992010708974854253397926124, −3.46794654278528226964588061284, −3.31088023549051013013276678955, −2.88026134974295139236782063997, −2.64823604294301214148879193302, −2.61812365475114739270998892494, −2.27927250007156010545737945339, −1.88215650738788830666285664808, −1.66520142302483777679319300576, −1.26387557611753727194401765180, −0.855595296510717856636467497669, −0.76342137354852615322798371255, −0.30300188091268477826440440497, 0.30300188091268477826440440497, 0.76342137354852615322798371255, 0.855595296510717856636467497669, 1.26387557611753727194401765180, 1.66520142302483777679319300576, 1.88215650738788830666285664808, 2.27927250007156010545737945339, 2.61812365475114739270998892494, 2.64823604294301214148879193302, 2.88026134974295139236782063997, 3.31088023549051013013276678955, 3.46794654278528226964588061284, 3.76992010708974854253397926124, 3.82078439526043869015774741772, 4.11283763399458967427802181847, 4.38386767823403846317582874454, 4.60839319173876106184715581880, 4.66487284234912939850531083849, 5.07554022201380351734413285253, 5.10717238815327686419250091804, 5.15967365969020026069904649934, 5.61531728575718966664116971954, 5.71791356953175737763660379785, 5.94968681617951073683584634279, 6.23219618402024318917055737516

Graph of the $Z$-function along the critical line