Properties

Label 8-304e4-1.1-c1e4-0-2
Degree $8$
Conductor $8540717056$
Sign $1$
Analytic cond. $34.7218$
Root an. cond. $1.55802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s + 12·17-s − 20·25-s + 22·49-s − 32·61-s − 44·73-s − 15·81-s + 72·101-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 24·153-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 2/3·9-s + 2.91·17-s − 4·25-s + 22/7·49-s − 4.09·61-s − 5.14·73-s − 5/3·81-s + 7.16·101-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(34.7218\)
Root analytic conductor: \(1.55802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.904735809\)
\(L(\frac12)\) \(\approx\) \(1.904735809\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
good3$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )^{2} \)
5$C_2$ \( ( 1 + p T^{2} )^{4} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 19 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 55 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 127 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 11 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 130 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 158 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.672061874151792143968298734310, −8.197166136460573239315518007286, −7.74057098591661363622282987027, −7.70217812489275921921244879116, −7.61631595988494673010127141725, −7.41742151558505521450733070441, −7.08497936416952254733109559369, −6.94509425852524969688763172845, −6.18175554752335399584078816365, −5.93689062924762537169690252088, −5.84837517283389699269946374500, −5.74436869095877790237327727324, −5.70268222407413260784561238337, −4.92834989301185977865003404654, −4.74211133192560811781261001211, −4.27670906700932501796249552188, −4.14887493503137114582602114231, −3.90959713555463200898393385726, −3.26302997517606004399166295917, −3.14210296018590805661309531729, −3.00052263060552618418182761369, −2.04937680750422649026388617953, −1.85587376102068615898652805644, −1.48830481180566274900136557302, −0.65945811695591830263193753544, 0.65945811695591830263193753544, 1.48830481180566274900136557302, 1.85587376102068615898652805644, 2.04937680750422649026388617953, 3.00052263060552618418182761369, 3.14210296018590805661309531729, 3.26302997517606004399166295917, 3.90959713555463200898393385726, 4.14887493503137114582602114231, 4.27670906700932501796249552188, 4.74211133192560811781261001211, 4.92834989301185977865003404654, 5.70268222407413260784561238337, 5.74436869095877790237327727324, 5.84837517283389699269946374500, 5.93689062924762537169690252088, 6.18175554752335399584078816365, 6.94509425852524969688763172845, 7.08497936416952254733109559369, 7.41742151558505521450733070441, 7.61631595988494673010127141725, 7.70217812489275921921244879116, 7.74057098591661363622282987027, 8.197166136460573239315518007286, 8.672061874151792143968298734310

Graph of the $Z$-function along the critical line