Properties

Label 8-55e8-1.1-c1e4-0-6
Degree $8$
Conductor $8.373\times 10^{13}$
Sign $1$
Analytic cond. $340415.$
Root an. cond. $4.91474$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 8·9-s + 7·16-s − 4·19-s − 28·31-s + 32·36-s − 16·49-s − 12·59-s + 40·61-s − 8·64-s − 12·71-s + 16·76-s + 8·79-s + 33·81-s − 12·89-s − 36·101-s − 16·109-s + 112·124-s + 127-s + 131-s + 137-s + 139-s − 56·144-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  − 2·4-s − 8/3·9-s + 7/4·16-s − 0.917·19-s − 5.02·31-s + 16/3·36-s − 2.28·49-s − 1.56·59-s + 5.12·61-s − 64-s − 1.42·71-s + 1.83·76-s + 0.900·79-s + 11/3·81-s − 1.27·89-s − 3.58·101-s − 1.53·109-s + 10.0·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 4.66·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(340415.\)
Root analytic conductor: \(4.91474\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 5^{8} \cdot 11^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
11 \( 1 \)
good2$D_4\times C_2$ \( 1 + p^{2} T^{2} + 9 T^{4} + p^{4} T^{6} + p^{4} T^{8} \)
3$D_4\times C_2$ \( 1 + 8 T^{2} + 31 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 + 16 T^{2} + 135 T^{4} + 16 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 + 52 T^{2} + 1206 T^{4} + 52 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 + 2 T + 12 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 40 T^{2} + 1266 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 14 T + 108 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 100 T^{2} + 4806 T^{4} + 100 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 79 T^{2} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 16 T^{2} + 2439 T^{4} + 16 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 40 T^{2} + 33 p T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 + 64 T^{2} + 1842 T^{4} + 64 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 6 T + 124 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 20 T + 219 T^{2} - 20 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 + 40 T^{2} - 2529 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 6 T + 124 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 122 T^{2} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 4 T + 150 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 68 T^{2} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 6 T + 175 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 304 T^{2} + 40194 T^{4} + 304 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.52059389227283789311930290107, −6.47230313360010601980553456623, −5.93354786316324716849344633602, −5.83192743835226294669442025141, −5.70851098750357131062846009513, −5.42949726041299435500212274588, −5.41969858233680054287916381094, −5.25645998004365236980502174037, −5.12788491612687854836103645385, −4.71622270586471447740983193029, −4.46463399037072436410576721694, −4.46338634088067092376584306036, −4.03280359942784010004037806808, −3.86742807739526323050827512030, −3.69063286875781572344806895076, −3.39153282375293826501620624426, −3.36274344519274170373440833788, −3.16092801031452559673392835022, −2.70613256642045019692628759148, −2.32973856269040244328993633063, −2.30322949296656629952665844367, −2.11174103918127809538545989604, −1.62446689256832513050787406694, −1.13390773918921887309377951087, −1.12615663508548652106420889042, 0, 0, 0, 0, 1.12615663508548652106420889042, 1.13390773918921887309377951087, 1.62446689256832513050787406694, 2.11174103918127809538545989604, 2.30322949296656629952665844367, 2.32973856269040244328993633063, 2.70613256642045019692628759148, 3.16092801031452559673392835022, 3.36274344519274170373440833788, 3.39153282375293826501620624426, 3.69063286875781572344806895076, 3.86742807739526323050827512030, 4.03280359942784010004037806808, 4.46338634088067092376584306036, 4.46463399037072436410576721694, 4.71622270586471447740983193029, 5.12788491612687854836103645385, 5.25645998004365236980502174037, 5.41969858233680054287916381094, 5.42949726041299435500212274588, 5.70851098750357131062846009513, 5.83192743835226294669442025141, 5.93354786316324716849344633602, 6.47230313360010601980553456623, 6.52059389227283789311930290107

Graph of the $Z$-function along the critical line