Properties

Degree $2$
Conductor $3024$
Sign $-0.971 + 0.236i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2.52·5-s + (1.07 − 2.41i)7-s − 5.71·11-s + (−2.45 + 4.24i)13-s + (−2.49 + 4.32i)17-s + (0.00383 + 0.00664i)19-s + 0.667·23-s + 1.36·25-s + (−3.85 − 6.66i)29-s + (−3.88 − 6.72i)31-s + (2.71 − 6.09i)35-s + (−3.19 − 5.53i)37-s + (−5.21 + 9.02i)41-s + (−4.42 − 7.67i)43-s + (−1.08 + 1.87i)47-s + ⋯
L(s)  = 1  + 1.12·5-s + (0.407 − 0.913i)7-s − 1.72·11-s + (−0.680 + 1.17i)13-s + (−0.605 + 1.04i)17-s + (0.000880 + 0.00152i)19-s + 0.139·23-s + 0.273·25-s + (−0.715 − 1.23i)29-s + (−0.697 − 1.20i)31-s + (0.459 − 1.03i)35-s + (−0.525 − 0.909i)37-s + (−0.813 + 1.40i)41-s + (−0.675 − 1.16i)43-s + (−0.157 + 0.272i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 + 0.236i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.971 + 0.236i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $-0.971 + 0.236i$
Motivic weight: \(1\)
Character: $\chi_{3024} (1873, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ -0.971 + 0.236i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3727034510\)
\(L(\frac12)\) \(\approx\) \(0.3727034510\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-1.07 + 2.41i)T \)
good5 \( 1 - 2.52T + 5T^{2} \)
11 \( 1 + 5.71T + 11T^{2} \)
13 \( 1 + (2.45 - 4.24i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (2.49 - 4.32i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.00383 - 0.00664i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 - 0.667T + 23T^{2} \)
29 \( 1 + (3.85 + 6.66i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (3.88 + 6.72i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (3.19 + 5.53i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (5.21 - 9.02i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (4.42 + 7.67i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (1.08 - 1.87i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-3.69 + 6.40i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-0.261 - 0.453i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-4.49 + 7.78i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (2.54 + 4.41i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 5.68T + 71T^{2} \)
73 \( 1 + (1.52 - 2.63i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-3.08 + 5.33i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (0.258 + 0.448i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (1.19 + 2.06i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-4.32 - 7.49i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.272435953616572648955172085799, −7.64536751368051067464460877060, −6.88894953607209350992820366301, −6.05936924037570488796730727005, −5.29202461909312724589797346194, −4.56502848408791621635286065744, −3.67356523827578130046656293156, −2.20724878925741295177689809362, −1.91841542299580093057106919183, −0.099064403954509078023102568877, 1.68675016062024851816101863880, 2.60179683315015298342951682521, 3.07934260486041685264114969262, 4.88946887788108900970853799161, 5.31067055781769366501578728092, 5.66899771931185472103656134224, 6.88880514895215983117084813500, 7.55094145988909832840633435360, 8.446314101892346780128248156116, 9.000202843406546584095753101123

Graph of the $Z$-function along the critical line