Properties

Degree $2$
Conductor $3024$
Sign $0.440 - 0.897i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.790 + 1.36i)5-s + (−2.57 − 0.601i)7-s + (−2.58 − 4.47i)11-s + (−0.681 − 1.18i)13-s + (2.30 − 3.99i)17-s + (−0.0321 − 0.0557i)19-s + (−3.37 + 5.84i)23-s + (1.24 + 2.16i)25-s + (−4.70 + 8.15i)29-s + 2.66·31-s + (2.86 − 3.05i)35-s + (0.880 + 1.52i)37-s + (0.858 + 1.48i)41-s + (5.12 − 8.86i)43-s + 5.20·47-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)5-s + (−0.973 − 0.227i)7-s + (−0.779 − 1.35i)11-s + (−0.189 − 0.327i)13-s + (0.559 − 0.969i)17-s + (−0.00738 − 0.0127i)19-s + (−0.703 + 1.21i)23-s + (0.249 + 0.432i)25-s + (−0.874 + 1.51i)29-s + 0.478·31-s + (0.483 − 0.516i)35-s + (0.144 + 0.250i)37-s + (0.134 + 0.232i)41-s + (0.780 − 1.35i)43-s + 0.759·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.440 - 0.897i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.440 - 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $0.440 - 0.897i$
Motivic weight: \(1\)
Character: $\chi_{3024} (2881, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ 0.440 - 0.897i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9452189320\)
\(L(\frac12)\) \(\approx\) \(0.9452189320\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (2.57 + 0.601i)T \)
good5 \( 1 + (0.790 - 1.36i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (2.58 + 4.47i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (0.681 + 1.18i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (-2.30 + 3.99i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.0321 + 0.0557i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (3.37 - 5.84i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (4.70 - 8.15i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 - 2.66T + 31T^{2} \)
37 \( 1 + (-0.880 - 1.52i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-0.858 - 1.48i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-5.12 + 8.86i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 - 5.20T + 47T^{2} \)
53 \( 1 + (-0.479 + 0.831i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + 9.33T + 59T^{2} \)
61 \( 1 - 14.3T + 61T^{2} \)
67 \( 1 - 12.4T + 67T^{2} \)
71 \( 1 + 4.49T + 71T^{2} \)
73 \( 1 + (0.941 - 1.63i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + 6.53T + 79T^{2} \)
83 \( 1 + (5.08 - 8.81i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-4.12 - 7.14i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (7.26 - 12.5i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.912260763649863818270764024966, −7.955882174483849215099805519248, −7.34501855221601159701532385903, −6.73343368330755867643820082315, −5.65998029805942628133714066041, −5.31749231383591034074753749336, −3.78422089846397475063213067934, −3.29589640884687088059820195942, −2.58234201695254788645267297619, −0.838326473390853632201604992338, 0.39332748244114020498395777320, 1.99689618369290997050810404315, 2.79245688846282714269384759892, 4.13041759858273694688555884172, 4.45259879712824604545988846381, 5.62073346244274453629718858208, 6.25392427164055841553415120842, 7.15172748886913344485183825137, 7.905001546533490086613680281051, 8.498486225328808760033171231908

Graph of the $Z$-function along the critical line