Properties

Degree $2$
Conductor $3024$
Sign $0.440 + 0.897i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.790 − 1.36i)5-s + (−2.57 + 0.601i)7-s + (−2.58 + 4.47i)11-s + (−0.681 + 1.18i)13-s + (2.30 + 3.99i)17-s + (−0.0321 + 0.0557i)19-s + (−3.37 − 5.84i)23-s + (1.24 − 2.16i)25-s + (−4.70 − 8.15i)29-s + 2.66·31-s + (2.86 + 3.05i)35-s + (0.880 − 1.52i)37-s + (0.858 − 1.48i)41-s + (5.12 + 8.86i)43-s + 5.20·47-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)5-s + (−0.973 + 0.227i)7-s + (−0.779 + 1.35i)11-s + (−0.189 + 0.327i)13-s + (0.559 + 0.969i)17-s + (−0.00738 + 0.0127i)19-s + (−0.703 − 1.21i)23-s + (0.249 − 0.432i)25-s + (−0.874 − 1.51i)29-s + 0.478·31-s + (0.483 + 0.516i)35-s + (0.144 − 0.250i)37-s + (0.134 − 0.232i)41-s + (0.780 + 1.35i)43-s + 0.759·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.440 + 0.897i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.440 + 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $0.440 + 0.897i$
Motivic weight: \(1\)
Character: $\chi_{3024} (2305, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ 0.440 + 0.897i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9452189320\)
\(L(\frac12)\) \(\approx\) \(0.9452189320\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (2.57 - 0.601i)T \)
good5 \( 1 + (0.790 + 1.36i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (2.58 - 4.47i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (0.681 - 1.18i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (-2.30 - 3.99i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.0321 - 0.0557i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (3.37 + 5.84i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (4.70 + 8.15i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 2.66T + 31T^{2} \)
37 \( 1 + (-0.880 + 1.52i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-0.858 + 1.48i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-5.12 - 8.86i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 - 5.20T + 47T^{2} \)
53 \( 1 + (-0.479 - 0.831i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + 9.33T + 59T^{2} \)
61 \( 1 - 14.3T + 61T^{2} \)
67 \( 1 - 12.4T + 67T^{2} \)
71 \( 1 + 4.49T + 71T^{2} \)
73 \( 1 + (0.941 + 1.63i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + 6.53T + 79T^{2} \)
83 \( 1 + (5.08 + 8.81i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-4.12 + 7.14i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (7.26 + 12.5i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.498486225328808760033171231908, −7.905001546533490086613680281051, −7.15172748886913344485183825137, −6.25392427164055841553415120842, −5.62073346244274453629718858208, −4.45259879712824604545988846381, −4.13041759858273694688555884172, −2.79245688846282714269384759892, −1.99689618369290997050810404315, −0.39332748244114020498395777320, 0.838326473390853632201604992338, 2.58234201695254788645267297619, 3.29589640884687088059820195942, 3.78422089846397475063213067934, 5.31749231383591034074753749336, 5.65998029805942628133714066041, 6.73343368330755867643820082315, 7.34501855221601159701532385903, 7.955882174483849215099805519248, 8.912260763649863818270764024966

Graph of the $Z$-function along the critical line