Properties

Degree $20$
Conductor $6.395\times 10^{34}$
Sign $1$
Motivic weight $1$
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 4·7-s + 4·11-s − 8·13-s − 12·17-s − 19-s + 3·23-s + 20·25-s − 7·29-s − 6·31-s − 16·35-s − 5·41-s + 7·43-s − 54·47-s + 4·49-s + 21·53-s − 16·55-s − 60·59-s + 28·61-s + 32·65-s − 4·67-s − 6·71-s + 15·73-s + 16·77-s − 8·79-s + 9·83-s + 48·85-s + ⋯
L(s)  = 1  − 1.78·5-s + 1.51·7-s + 1.20·11-s − 2.21·13-s − 2.91·17-s − 0.229·19-s + 0.625·23-s + 4·25-s − 1.29·29-s − 1.07·31-s − 2.70·35-s − 0.780·41-s + 1.06·43-s − 7.87·47-s + 4/7·49-s + 2.88·53-s − 2.15·55-s − 7.81·59-s + 3.58·61-s + 3.96·65-s − 0.488·67-s − 0.712·71-s + 1.75·73-s + 1.82·77-s − 0.900·79-s + 0.987·83-s + 5.20·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{30} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{30} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(2^{40} \cdot 3^{30} \cdot 7^{10}\)
Sign: $1$
Motivic weight: \(1\)
Character: induced by $\chi_{3024} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 2^{40} \cdot 3^{30} \cdot 7^{10} ,\ ( \ : [1/2]^{10} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.640897933\)
\(L(\frac12)\) \(\approx\) \(1.640897933\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - 4 T + 12 T^{2} - 47 T^{3} + 146 T^{4} - 309 T^{5} + 146 p T^{6} - 47 p^{2} T^{7} + 12 p^{3} T^{8} - 4 p^{4} T^{9} + p^{5} T^{10} \)
good5 \( 1 + 4 T - 4 T^{2} - 44 T^{3} - 41 T^{4} + 119 T^{5} + 222 T^{6} + 456 T^{7} + 1623 T^{8} - 2021 T^{9} - 16541 T^{10} - 2021 p T^{11} + 1623 p^{2} T^{12} + 456 p^{3} T^{13} + 222 p^{4} T^{14} + 119 p^{5} T^{15} - 41 p^{6} T^{16} - 44 p^{7} T^{17} - 4 p^{8} T^{18} + 4 p^{9} T^{19} + p^{10} T^{20} \)
11 \( 1 - 4 T - 31 T^{2} + 134 T^{3} + 607 T^{4} - 2492 T^{5} - 8385 T^{6} + 27495 T^{7} + 98940 T^{8} - 135733 T^{9} - 1043873 T^{10} - 135733 p T^{11} + 98940 p^{2} T^{12} + 27495 p^{3} T^{13} - 8385 p^{4} T^{14} - 2492 p^{5} T^{15} + 607 p^{6} T^{16} + 134 p^{7} T^{17} - 31 p^{8} T^{18} - 4 p^{9} T^{19} + p^{10} T^{20} \)
13 \( 1 + 8 T - 14 T^{2} - 14 p T^{3} + 686 T^{4} + 4429 T^{5} - 12871 T^{6} - 3323 p T^{7} + 305249 T^{8} + 358672 T^{9} - 3841969 T^{10} + 358672 p T^{11} + 305249 p^{2} T^{12} - 3323 p^{4} T^{13} - 12871 p^{4} T^{14} + 4429 p^{5} T^{15} + 686 p^{6} T^{16} - 14 p^{8} T^{17} - 14 p^{8} T^{18} + 8 p^{9} T^{19} + p^{10} T^{20} \)
17 \( 1 + 12 T + 14 T^{2} - 192 T^{3} + 1185 T^{4} + 11847 T^{5} - 6180 T^{6} - 65736 T^{7} + 1002861 T^{8} + 2436261 T^{9} - 7749777 T^{10} + 2436261 p T^{11} + 1002861 p^{2} T^{12} - 65736 p^{3} T^{13} - 6180 p^{4} T^{14} + 11847 p^{5} T^{15} + 1185 p^{6} T^{16} - 192 p^{7} T^{17} + 14 p^{8} T^{18} + 12 p^{9} T^{19} + p^{10} T^{20} \)
19 \( 1 + T - 53 T^{2} - 10 p T^{3} + 1262 T^{4} + 7007 T^{5} - 13111 T^{6} - 116110 T^{7} + 67964 T^{8} + 721616 T^{9} - 440023 T^{10} + 721616 p T^{11} + 67964 p^{2} T^{12} - 116110 p^{3} T^{13} - 13111 p^{4} T^{14} + 7007 p^{5} T^{15} + 1262 p^{6} T^{16} - 10 p^{8} T^{17} - 53 p^{8} T^{18} + p^{9} T^{19} + p^{10} T^{20} \)
23 \( 1 - 3 T - 43 T^{2} + 294 T^{3} + 6 T^{4} - 5127 T^{5} + 21792 T^{6} - 135027 T^{7} + 502362 T^{8} + 3271749 T^{9} - 33095343 T^{10} + 3271749 p T^{11} + 502362 p^{2} T^{12} - 135027 p^{3} T^{13} + 21792 p^{4} T^{14} - 5127 p^{5} T^{15} + 6 p^{6} T^{16} + 294 p^{7} T^{17} - 43 p^{8} T^{18} - 3 p^{9} T^{19} + p^{10} T^{20} \)
29 \( 1 + 7 T - 76 T^{2} - 419 T^{3} + 4561 T^{4} + 15146 T^{5} - 199563 T^{6} - 341373 T^{7} + 6918636 T^{8} + 2570041 T^{9} - 219913241 T^{10} + 2570041 p T^{11} + 6918636 p^{2} T^{12} - 341373 p^{3} T^{13} - 199563 p^{4} T^{14} + 15146 p^{5} T^{15} + 4561 p^{6} T^{16} - 419 p^{7} T^{17} - 76 p^{8} T^{18} + 7 p^{9} T^{19} + p^{10} T^{20} \)
31 \( ( 1 + 3 T + 134 T^{2} + 308 T^{3} + 250 p T^{4} + 13615 T^{5} + 250 p^{2} T^{6} + 308 p^{2} T^{7} + 134 p^{3} T^{8} + 3 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
37 \( 1 - 89 T^{2} + 560 T^{3} + 4503 T^{4} - 45352 T^{5} + 27130 T^{6} + 2296536 T^{7} - 9801827 T^{8} - 33131096 T^{9} + 610977105 T^{10} - 33131096 p T^{11} - 9801827 p^{2} T^{12} + 2296536 p^{3} T^{13} + 27130 p^{4} T^{14} - 45352 p^{5} T^{15} + 4503 p^{6} T^{16} + 560 p^{7} T^{17} - 89 p^{8} T^{18} + p^{10} T^{20} \)
41 \( 1 + 5 T - 136 T^{2} - 733 T^{3} + 10507 T^{4} + 54412 T^{5} - 554055 T^{6} - 2345451 T^{7} + 23706084 T^{8} + 41392439 T^{9} - 952045937 T^{10} + 41392439 p T^{11} + 23706084 p^{2} T^{12} - 2345451 p^{3} T^{13} - 554055 p^{4} T^{14} + 54412 p^{5} T^{15} + 10507 p^{6} T^{16} - 733 p^{7} T^{17} - 136 p^{8} T^{18} + 5 p^{9} T^{19} + p^{10} T^{20} \)
43 \( 1 - 7 T - 77 T^{2} + 66 T^{3} + 7014 T^{4} + 3843 T^{5} - 95427 T^{6} - 1632678 T^{7} - 3708600 T^{8} + 15416324 T^{9} + 670279801 T^{10} + 15416324 p T^{11} - 3708600 p^{2} T^{12} - 1632678 p^{3} T^{13} - 95427 p^{4} T^{14} + 3843 p^{5} T^{15} + 7014 p^{6} T^{16} + 66 p^{7} T^{17} - 77 p^{8} T^{18} - 7 p^{9} T^{19} + p^{10} T^{20} \)
47 \( ( 1 + 27 T + 448 T^{2} + 5169 T^{3} + 48091 T^{4} + 359985 T^{5} + 48091 p T^{6} + 5169 p^{2} T^{7} + 448 p^{3} T^{8} + 27 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
53 \( 1 - 21 T + 41 T^{2} + 924 T^{3} + 12966 T^{4} - 177027 T^{5} - 601755 T^{6} + 3783942 T^{7} + 110973258 T^{8} - 340111866 T^{9} - 4044436041 T^{10} - 340111866 p T^{11} + 110973258 p^{2} T^{12} + 3783942 p^{3} T^{13} - 601755 p^{4} T^{14} - 177027 p^{5} T^{15} + 12966 p^{6} T^{16} + 924 p^{7} T^{17} + 41 p^{8} T^{18} - 21 p^{9} T^{19} + p^{10} T^{20} \)
59 \( ( 1 + 30 T + 601 T^{2} + 8193 T^{3} + 88864 T^{4} + 752289 T^{5} + 88864 p T^{6} + 8193 p^{2} T^{7} + 601 p^{3} T^{8} + 30 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
61 \( ( 1 - 14 T + 339 T^{2} - 3409 T^{3} + 43418 T^{4} - 311709 T^{5} + 43418 p T^{6} - 3409 p^{2} T^{7} + 339 p^{3} T^{8} - 14 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
67 \( ( 1 + 2 T + 132 T^{2} + 196 T^{3} + 10871 T^{4} + 15429 T^{5} + 10871 p T^{6} + 196 p^{2} T^{7} + 132 p^{3} T^{8} + 2 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
71 \( ( 1 + 3 T + 187 T^{2} + 285 T^{3} + 15679 T^{4} + 10143 T^{5} + 15679 p T^{6} + 285 p^{2} T^{7} + 187 p^{3} T^{8} + 3 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
73 \( 1 - 15 T - 134 T^{2} + 2501 T^{3} + 16563 T^{4} - 235276 T^{5} - 2002535 T^{6} + 9021201 T^{7} + 288508378 T^{8} - 238799411 T^{9} - 25271949561 T^{10} - 238799411 p T^{11} + 288508378 p^{2} T^{12} + 9021201 p^{3} T^{13} - 2002535 p^{4} T^{14} - 235276 p^{5} T^{15} + 16563 p^{6} T^{16} + 2501 p^{7} T^{17} - 134 p^{8} T^{18} - 15 p^{9} T^{19} + p^{10} T^{20} \)
79 \( ( 1 + 4 T + 300 T^{2} + 1488 T^{3} + 39873 T^{4} + 184983 T^{5} + 39873 p T^{6} + 1488 p^{2} T^{7} + 300 p^{3} T^{8} + 4 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
83 \( 1 - 9 T - 148 T^{2} - 297 T^{3} + 24654 T^{4} + 118125 T^{5} - 807174 T^{6} - 21382137 T^{7} - 37648479 T^{8} + 452536146 T^{9} + 15509586612 T^{10} + 452536146 p T^{11} - 37648479 p^{2} T^{12} - 21382137 p^{3} T^{13} - 807174 p^{4} T^{14} + 118125 p^{5} T^{15} + 24654 p^{6} T^{16} - 297 p^{7} T^{17} - 148 p^{8} T^{18} - 9 p^{9} T^{19} + p^{10} T^{20} \)
89 \( 1 + 28 T + 104 T^{2} - 1736 T^{3} + 31273 T^{4} + 611939 T^{5} - 1780638 T^{6} - 18973932 T^{7} + 740914101 T^{8} + 3271180573 T^{9} - 40614588329 T^{10} + 3271180573 p T^{11} + 740914101 p^{2} T^{12} - 18973932 p^{3} T^{13} - 1780638 p^{4} T^{14} + 611939 p^{5} T^{15} + 31273 p^{6} T^{16} - 1736 p^{7} T^{17} + 104 p^{8} T^{18} + 28 p^{9} T^{19} + p^{10} T^{20} \)
97 \( 1 + 12 T - 197 T^{2} - 1534 T^{3} + 27813 T^{4} + 14090 T^{5} - 4545035 T^{6} - 6881349 T^{7} + 472663750 T^{8} + 908843245 T^{9} - 38512186359 T^{10} + 908843245 p T^{11} + 472663750 p^{2} T^{12} - 6881349 p^{3} T^{13} - 4545035 p^{4} T^{14} + 14090 p^{5} T^{15} + 27813 p^{6} T^{16} - 1534 p^{7} T^{17} - 197 p^{8} T^{18} + 12 p^{9} T^{19} + p^{10} T^{20} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.12092835655001752145802274712, −2.83947015808897309819118902984, −2.77597077607806129164028570514, −2.76128202915823273488896191643, −2.73608402703109717600855297468, −2.66013878914585136660806809303, −2.55917256881559712599871324618, −2.28213849382436919798826369214, −2.22830315852088177247707373443, −1.94359756965952018895065764651, −1.91178267895621716900892122160, −1.90574999421930746477905986473, −1.83448911239918022148338744024, −1.71638982685601846014052586001, −1.71604167520707212933826040187, −1.44859730147662817735110059670, −1.30359057440518970210895709350, −1.28233338073365597384685054339, −1.16539585155989519254863255410, −1.00140165901038985209169085773, −0.63135890695479856478543374021, −0.51704283684771202610820425109, −0.29585011907784838677023229108, −0.26469765772822829096414647764, −0.19907604573212221869333258266, 0.19907604573212221869333258266, 0.26469765772822829096414647764, 0.29585011907784838677023229108, 0.51704283684771202610820425109, 0.63135890695479856478543374021, 1.00140165901038985209169085773, 1.16539585155989519254863255410, 1.28233338073365597384685054339, 1.30359057440518970210895709350, 1.44859730147662817735110059670, 1.71604167520707212933826040187, 1.71638982685601846014052586001, 1.83448911239918022148338744024, 1.90574999421930746477905986473, 1.91178267895621716900892122160, 1.94359756965952018895065764651, 2.22830315852088177247707373443, 2.28213849382436919798826369214, 2.55917256881559712599871324618, 2.66013878914585136660806809303, 2.73608402703109717600855297468, 2.76128202915823273488896191643, 2.77597077607806129164028570514, 2.83947015808897309819118902984, 3.12092835655001752145802274712

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.