Properties

Degree $2$
Conductor $3024$
Sign $0.933 - 0.357i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2.70·5-s + (0.946 + 2.47i)7-s − 0.464i·11-s − 3.03i·13-s + 0.900·17-s − 0.831i·19-s + 7.12i·23-s + 2.33·25-s − 4.22i·29-s − 1.30i·31-s + (2.56 + 6.69i)35-s + 10.3·37-s + 5.51·41-s + 11.8·43-s + 8.63·47-s + ⋯
L(s)  = 1  + 1.21·5-s + (0.357 + 0.933i)7-s − 0.140i·11-s − 0.842i·13-s + 0.218·17-s − 0.190i·19-s + 1.48i·23-s + 0.466·25-s − 0.784i·29-s − 0.234i·31-s + (0.433 + 1.13i)35-s + 1.70·37-s + 0.860·41-s + 1.80·43-s + 1.26·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.933 - 0.357i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.933 - 0.357i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $0.933 - 0.357i$
Motivic weight: \(1\)
Character: $\chi_{3024} (1889, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ 0.933 - 0.357i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.557634479\)
\(L(\frac12)\) \(\approx\) \(2.557634479\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-0.946 - 2.47i)T \)
good5 \( 1 - 2.70T + 5T^{2} \)
11 \( 1 + 0.464iT - 11T^{2} \)
13 \( 1 + 3.03iT - 13T^{2} \)
17 \( 1 - 0.900T + 17T^{2} \)
19 \( 1 + 0.831iT - 19T^{2} \)
23 \( 1 - 7.12iT - 23T^{2} \)
29 \( 1 + 4.22iT - 29T^{2} \)
31 \( 1 + 1.30iT - 31T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 - 5.51T + 41T^{2} \)
43 \( 1 - 11.8T + 43T^{2} \)
47 \( 1 - 8.63T + 47T^{2} \)
53 \( 1 + 8.45iT - 53T^{2} \)
59 \( 1 + 14.2T + 59T^{2} \)
61 \( 1 - 3.27iT - 61T^{2} \)
67 \( 1 - 3.40T + 67T^{2} \)
71 \( 1 - 7.76iT - 71T^{2} \)
73 \( 1 - 4.83iT - 73T^{2} \)
79 \( 1 + 5.04T + 79T^{2} \)
83 \( 1 + 5.31T + 83T^{2} \)
89 \( 1 + 5.22T + 89T^{2} \)
97 \( 1 - 12.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.936709104493227420232663059677, −7.971449300593667286567913674854, −7.42763883508997272069594626034, −6.05091307486459708459030591137, −5.86820117095340228003895596869, −5.18102754943391940995382046036, −4.09172662254025480164122662095, −2.83344261024666491951043356772, −2.24571985106003356685893833151, −1.10380185963872050585442237895, 0.968202698864195125912582872434, 1.95334404243282628314889666044, 2.85530469807277314846605691318, 4.21302679952225947436128352072, 4.63192260698681742728656894454, 5.81200416260668259568999298381, 6.29704503358605275971986985761, 7.19576293179020742531733196380, 7.80675456376017912481099397308, 8.885840861516933072706840374849

Graph of the $Z$-function along the critical line