# Properties

 Degree $2$ Conductor $3024$ Sign $0.755 - 0.654i$ Motivic weight $1$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + 3.46·5-s + (−2 + 1.73i)7-s − 6i·11-s + 1.73i·13-s − 1.73·17-s + 6.92i·19-s + 3i·23-s + 6.99·25-s + 3i·29-s + 5.19i·31-s + (−6.92 + 5.99i)35-s − 2·37-s + 6.92·41-s + 11·43-s + 6.92·47-s + ⋯
 L(s)  = 1 + 1.54·5-s + (−0.755 + 0.654i)7-s − 1.80i·11-s + 0.480i·13-s − 0.420·17-s + 1.58i·19-s + 0.625i·23-s + 1.39·25-s + 0.557i·29-s + 0.933i·31-s + (−1.17 + 1.01i)35-s − 0.328·37-s + 1.08·41-s + 1.67·43-s + 1.01·47-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$3024$$    =    $$2^{4} \cdot 3^{3} \cdot 7$$ Sign: $0.755 - 0.654i$ Motivic weight: $$1$$ Character: $\chi_{3024} (1889, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 3024,\ (\ :1/2),\ 0.755 - 0.654i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$2.200743948$$ $$L(\frac12)$$ $$\approx$$ $$2.200743948$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1$$
7 $$1 + (2 - 1.73i)T$$
good5 $$1 - 3.46T + 5T^{2}$$
11 $$1 + 6iT - 11T^{2}$$
13 $$1 - 1.73iT - 13T^{2}$$
17 $$1 + 1.73T + 17T^{2}$$
19 $$1 - 6.92iT - 19T^{2}$$
23 $$1 - 3iT - 23T^{2}$$
29 $$1 - 3iT - 29T^{2}$$
31 $$1 - 5.19iT - 31T^{2}$$
37 $$1 + 2T + 37T^{2}$$
41 $$1 - 6.92T + 41T^{2}$$
43 $$1 - 11T + 43T^{2}$$
47 $$1 - 6.92T + 47T^{2}$$
53 $$1 - 3iT - 53T^{2}$$
59 $$1 - 8.66T + 59T^{2}$$
61 $$1 - 13.8iT - 61T^{2}$$
67 $$1 - 7T + 67T^{2}$$
71 $$1 + 3iT - 71T^{2}$$
73 $$1 + 6.92iT - 73T^{2}$$
79 $$1 + 8T + 79T^{2}$$
83 $$1 - 3.46T + 83T^{2}$$
89 $$1 - 5.19T + 89T^{2}$$
97 $$1 - 6.92iT - 97T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$