Properties

Label 8-3024e4-1.1-c1e4-0-8
Degree $8$
Conductor $8.362\times 10^{13}$
Sign $1$
Analytic cond. $339966.$
Root an. cond. $4.91393$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s − 14·25-s + 28·37-s + 8·43-s + 34·49-s − 8·67-s + 40·79-s + 52·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 28·169-s + 173-s + 112·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 3.02·7-s − 2.79·25-s + 4.60·37-s + 1.21·43-s + 34/7·49-s − 0.977·67-s + 4.50·79-s + 4.98·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.15·169-s + 0.0760·173-s + 8.46·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(339966.\)
Root analytic conductor: \(4.91393\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.330143512\)
\(L(\frac12)\) \(\approx\) \(2.330143512\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 35 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 35 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 7 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 65 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 82 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 133 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 151 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.99199822920316607045620948768, −5.97999394463375606826302926304, −5.90286518911750377260681662107, −5.82034701978059741727132604678, −5.76600076727854528197094724023, −5.02061166237691540840470232124, −4.97298416771052609221957228324, −4.69268245711063308092133663035, −4.51353866304988817401188276589, −4.12612018602031606189479632411, −4.09788127557668054129975893460, −4.01514851054813665090003390018, −3.51703100978515882937397451218, −3.34179720937903262778843681848, −3.23407553226875657623405817705, −3.09301302687798773058509012169, −2.87887968375824336203322480100, −2.32852795461321131309851571246, −2.15135714466086062282842259098, −2.12393609344801081837188163161, −1.98201862986420093383132169337, −1.13870564884757769888179378592, −0.78166000136720687015148149888, −0.64600425920769073754122259475, −0.36103029811922878218604411531, 0.36103029811922878218604411531, 0.64600425920769073754122259475, 0.78166000136720687015148149888, 1.13870564884757769888179378592, 1.98201862986420093383132169337, 2.12393609344801081837188163161, 2.15135714466086062282842259098, 2.32852795461321131309851571246, 2.87887968375824336203322480100, 3.09301302687798773058509012169, 3.23407553226875657623405817705, 3.34179720937903262778843681848, 3.51703100978515882937397451218, 4.01514851054813665090003390018, 4.09788127557668054129975893460, 4.12612018602031606189479632411, 4.51353866304988817401188276589, 4.69268245711063308092133663035, 4.97298416771052609221957228324, 5.02061166237691540840470232124, 5.76600076727854528197094724023, 5.82034701978059741727132604678, 5.90286518911750377260681662107, 5.97999394463375606826302926304, 5.99199822920316607045620948768

Graph of the $Z$-function along the critical line