Properties

Degree 2
Conductor $ 2^{4} \cdot 3^{3} \cdot 7 $
Sign $-0.990 - 0.135i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3.63i·5-s + (1 + 2.44i)7-s + 1.50i·11-s + 5.91i·13-s − 5.14i·17-s − 5.24·19-s + 8.78i·23-s − 8.24·25-s + 8.91·29-s − 3.24·31-s + (−8.91 + 3.63i)35-s + 37-s + 6.65i·41-s − 9.37i·43-s − 3.69·47-s + ⋯
L(s)  = 1  + 1.62i·5-s + (0.377 + 0.925i)7-s + 0.454i·11-s + 1.64i·13-s − 1.24i·17-s − 1.20·19-s + 1.83i·23-s − 1.64·25-s + 1.65·29-s − 0.582·31-s + (−1.50 + 0.615i)35-s + 0.164·37-s + 1.03i·41-s − 1.43i·43-s − 0.538·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 - 0.135i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 - 0.135i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $-0.990 - 0.135i$
motivic weight  =  \(1\)
character  :  $\chi_{3024} (1567, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 3024,\ (\ :1/2),\ -0.990 - 0.135i)\)
\(L(1)\)  \(\approx\)  \(1.513396310\)
\(L(\frac12)\)  \(\approx\)  \(1.513396310\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-1 - 2.44i)T \)
good5 \( 1 - 3.63iT - 5T^{2} \)
11 \( 1 - 1.50iT - 11T^{2} \)
13 \( 1 - 5.91iT - 13T^{2} \)
17 \( 1 + 5.14iT - 17T^{2} \)
19 \( 1 + 5.24T + 19T^{2} \)
23 \( 1 - 8.78iT - 23T^{2} \)
29 \( 1 - 8.91T + 29T^{2} \)
31 \( 1 + 3.24T + 31T^{2} \)
37 \( 1 - T + 37T^{2} \)
41 \( 1 - 6.65iT - 41T^{2} \)
43 \( 1 + 9.37iT - 43T^{2} \)
47 \( 1 + 3.69T + 47T^{2} \)
53 \( 1 - 12.6T + 53T^{2} \)
59 \( 1 - 8.91T + 59T^{2} \)
61 \( 1 + 3.46iT - 61T^{2} \)
67 \( 1 + 10.8iT - 67T^{2} \)
71 \( 1 + 3.63iT - 71T^{2} \)
73 \( 1 - 0.420iT - 73T^{2} \)
79 \( 1 + 4.47iT - 79T^{2} \)
83 \( 1 - 3.69T + 83T^{2} \)
89 \( 1 + 13.9iT - 89T^{2} \)
97 \( 1 - 13.2iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.202306100618040090175276249920, −8.330250316361748491776675050532, −7.35265042036705368821089106352, −6.84727111942860485937026068181, −6.26625124856155909717617274561, −5.28144398480595824472595878238, −4.38742206716570776523408786395, −3.40115118862095487011183889496, −2.46271910114166375219419299602, −1.87774330177259917140852766999, 0.50357090938047637364049492536, 1.19749245138678882116307096611, 2.53056085332672203852734687000, 3.89460281954542998628946986677, 4.40807325693662215342607286192, 5.21170423519660237421085735609, 5.95661307145539828861490768358, 6.82856033874754099043127073003, 8.018144151929269794329277376538, 8.412025291429080600902299996596

Graph of the $Z$-function along the critical line