Properties

Degree $2$
Conductor $3024$
Sign $-0.990 - 0.135i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2.18i·5-s + (−1 − 2.44i)7-s + 5.26i·11-s − 1.01i·13-s + 3.08i·17-s − 3.24·19-s + 0.903i·23-s + 0.242·25-s + 5.34·29-s − 5.24·31-s + (5.34 − 2.18i)35-s + 37-s − 8.35i·41-s − 4.47i·43-s − 12.8·47-s + ⋯
L(s)  = 1  + 0.975i·5-s + (−0.377 − 0.925i)7-s + 1.58i·11-s − 0.281i·13-s + 0.748i·17-s − 0.743·19-s + 0.188i·23-s + 0.0485·25-s + 0.992·29-s − 0.941·31-s + (0.903 − 0.368i)35-s + 0.164·37-s − 1.30i·41-s − 0.682i·43-s − 1.88·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 - 0.135i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 - 0.135i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $-0.990 - 0.135i$
Motivic weight: \(1\)
Character: $\chi_{3024} (1567, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ -0.990 - 0.135i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5756079049\)
\(L(\frac12)\) \(\approx\) \(0.5756079049\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (1 + 2.44i)T \)
good5 \( 1 - 2.18iT - 5T^{2} \)
11 \( 1 - 5.26iT - 11T^{2} \)
13 \( 1 + 1.01iT - 13T^{2} \)
17 \( 1 - 3.08iT - 17T^{2} \)
19 \( 1 + 3.24T + 19T^{2} \)
23 \( 1 - 0.903iT - 23T^{2} \)
29 \( 1 - 5.34T + 29T^{2} \)
31 \( 1 + 5.24T + 31T^{2} \)
37 \( 1 - T + 37T^{2} \)
41 \( 1 + 8.35iT - 41T^{2} \)
43 \( 1 + 4.47iT - 43T^{2} \)
47 \( 1 + 12.8T + 47T^{2} \)
53 \( 1 + 7.55T + 53T^{2} \)
59 \( 1 + 5.34T + 59T^{2} \)
61 \( 1 - 3.46iT - 61T^{2} \)
67 \( 1 - 3.88iT - 67T^{2} \)
71 \( 1 - 2.18iT - 71T^{2} \)
73 \( 1 - 14.2iT - 73T^{2} \)
79 \( 1 + 9.37iT - 79T^{2} \)
83 \( 1 - 12.8T + 83T^{2} \)
89 \( 1 - 3.98iT - 89T^{2} \)
97 \( 1 - 6.33iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.216483532972918292488428195344, −8.155606051788193449277562639468, −7.44155465984688832333205808648, −6.81094801252817957812844247575, −6.38460526529055845645051197592, −5.17820229874053654769882977628, −4.27017558010783077764048979206, −3.59491601991524254773666399466, −2.58715044915673088761415599183, −1.58154602854550319382700260484, 0.17700542817164241543237123332, 1.42606561025901687241758340471, 2.71836539686717933082298533608, 3.43513878904390566710168672460, 4.68567275291557557791703028895, 5.18367826672314646661094602250, 6.19377603531303460948823199245, 6.52712014466172546518983171598, 7.993158720282420416252743273826, 8.348510697400878718180953816258

Graph of the $Z$-function along the critical line