Properties

Degree $2$
Conductor $3024$
Sign $0.612 - 0.790i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3.63i·5-s + (−1 − 2.44i)7-s + 1.50i·11-s + 5.91i·13-s + 5.14i·17-s + 5.24·19-s + 8.78i·23-s − 8.24·25-s − 8.91·29-s + 3.24·31-s + (−8.91 + 3.63i)35-s + 37-s − 6.65i·41-s + 9.37i·43-s − 3.69·47-s + ⋯
L(s)  = 1  − 1.62i·5-s + (−0.377 − 0.925i)7-s + 0.454i·11-s + 1.64i·13-s + 1.24i·17-s + 1.20·19-s + 1.83i·23-s − 1.64·25-s − 1.65·29-s + 0.582·31-s + (−1.50 + 0.615i)35-s + 0.164·37-s − 1.03i·41-s + 1.43i·43-s − 0.538·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.612 - 0.790i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.612 - 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $0.612 - 0.790i$
Motivic weight: \(1\)
Character: $\chi_{3024} (1567, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ 0.612 - 0.790i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.175072133\)
\(L(\frac12)\) \(\approx\) \(1.175072133\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (1 + 2.44i)T \)
good5 \( 1 + 3.63iT - 5T^{2} \)
11 \( 1 - 1.50iT - 11T^{2} \)
13 \( 1 - 5.91iT - 13T^{2} \)
17 \( 1 - 5.14iT - 17T^{2} \)
19 \( 1 - 5.24T + 19T^{2} \)
23 \( 1 - 8.78iT - 23T^{2} \)
29 \( 1 + 8.91T + 29T^{2} \)
31 \( 1 - 3.24T + 31T^{2} \)
37 \( 1 - T + 37T^{2} \)
41 \( 1 + 6.65iT - 41T^{2} \)
43 \( 1 - 9.37iT - 43T^{2} \)
47 \( 1 + 3.69T + 47T^{2} \)
53 \( 1 + 12.6T + 53T^{2} \)
59 \( 1 - 8.91T + 59T^{2} \)
61 \( 1 + 3.46iT - 61T^{2} \)
67 \( 1 - 10.8iT - 67T^{2} \)
71 \( 1 + 3.63iT - 71T^{2} \)
73 \( 1 - 0.420iT - 73T^{2} \)
79 \( 1 - 4.47iT - 79T^{2} \)
83 \( 1 - 3.69T + 83T^{2} \)
89 \( 1 - 13.9iT - 89T^{2} \)
97 \( 1 - 13.2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.016770371524814724854268285829, −8.002744995003767400774947916603, −7.48119738664847095318448569638, −6.60007928249526414460367139641, −5.66507514524857527642123695669, −4.90629174775449708332411557684, −4.10702539648904277797326660461, −3.59933753312088439606553740594, −1.78134620773861925201347113320, −1.22847883729242143737330354093, 0.38546299892492679391648746798, 2.30879275957575001832926948158, 3.05147224486631224189786822523, 3.34970779435137782981383851708, 4.91671958664972324886807819847, 5.72044152806688230892050144511, 6.30158129534093397336755970914, 7.12208461161871471077660681982, 7.75567278094872124373583087686, 8.546390835016822739831258240354

Graph of the $Z$-function along the critical line