Properties

Label 8-3024e4-1.1-c1e4-0-1
Degree $8$
Conductor $8.362\times 10^{13}$
Sign $1$
Analytic cond. $339966.$
Root an. cond. $4.91393$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·25-s + 16·37-s + 24·47-s + 14·49-s + 12·59-s − 48·83-s − 64·109-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 4/5·25-s + 2.63·37-s + 3.50·47-s + 2·49-s + 1.56·59-s − 5.26·83-s − 6.13·109-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(339966.\)
Root analytic conductor: \(4.91393\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.09836864239\)
\(L(\frac12)\) \(\approx\) \(0.09836864239\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 31 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 25 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 55 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + 43 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
61$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
71$C_2^2$ \( ( 1 - 121 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 62 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
89$C_2^2$ \( ( 1 - 151 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.25814290978141918485124794394, −5.76735368766186348986066713867, −5.76515481745639191221129393818, −5.68676832819156409439262995130, −5.31975209763907443802360889622, −5.31055211203398636729193298299, −5.16247616849183284838502815948, −4.56799010705388635587468425687, −4.36417634175394116819730790853, −4.25992523959258297305155712626, −4.20501898254237431183322129056, −3.98886279730996688910234514508, −3.76370380319991488130551559939, −3.53012362507592307576924325945, −3.12030548979434185576113545120, −2.81114110682084141023608228566, −2.68029201200092424888316633124, −2.45556114013393721282496942550, −2.39462478219914622774970085267, −2.04106665427616184085299894784, −1.61894045361787117320079284327, −1.12833511570297928311796515283, −1.09622869285781823564288051050, −0.871220741973297946928450288144, −0.04664815682414418271997626973, 0.04664815682414418271997626973, 0.871220741973297946928450288144, 1.09622869285781823564288051050, 1.12833511570297928311796515283, 1.61894045361787117320079284327, 2.04106665427616184085299894784, 2.39462478219914622774970085267, 2.45556114013393721282496942550, 2.68029201200092424888316633124, 2.81114110682084141023608228566, 3.12030548979434185576113545120, 3.53012362507592307576924325945, 3.76370380319991488130551559939, 3.98886279730996688910234514508, 4.20501898254237431183322129056, 4.25992523959258297305155712626, 4.36417634175394116819730790853, 4.56799010705388635587468425687, 5.16247616849183284838502815948, 5.31055211203398636729193298299, 5.31975209763907443802360889622, 5.68676832819156409439262995130, 5.76515481745639191221129393818, 5.76735368766186348986066713867, 6.25814290978141918485124794394

Graph of the $Z$-function along the critical line