Properties

Degree $2$
Conductor $3024$
Sign $-0.188 + 0.981i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 2.59i)7-s − 5.19i·13-s − 7·19-s + 5·25-s + 4·31-s − 11·37-s − 10.3i·43-s + (−6.5 − 2.59i)49-s − 15.5i·61-s + 15.5i·67-s − 15.5i·73-s − 5.19i·79-s + (13.5 + 2.59i)91-s − 5.19i·97-s + 13·103-s + ⋯
L(s)  = 1  + (−0.188 + 0.981i)7-s − 1.44i·13-s − 1.60·19-s + 25-s + 0.718·31-s − 1.80·37-s − 1.58i·43-s + (−0.928 − 0.371i)49-s − 1.99i·61-s + 1.90i·67-s − 1.82i·73-s − 0.584i·79-s + (1.41 + 0.272i)91-s − 0.527i·97-s + 1.28·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.188 + 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.188 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $-0.188 + 0.981i$
Motivic weight: \(1\)
Character: $\chi_{3024} (1567, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ -0.188 + 0.981i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9405976165\)
\(L(\frac12)\) \(\approx\) \(0.9405976165\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (0.5 - 2.59i)T \)
good5 \( 1 - 5T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + 5.19iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 + 7T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 11T + 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + 10.3iT - 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 15.5iT - 61T^{2} \)
67 \( 1 - 15.5iT - 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 15.5iT - 73T^{2} \)
79 \( 1 + 5.19iT - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 + 5.19iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.623476487465571274226712558019, −7.926677556188623053776491347935, −6.90577504287534565230776954988, −6.22026805230902556378040357776, −5.43459385225496633594064220032, −4.79514110234140824617061367210, −3.60095581417708514291194309067, −2.80670669404334344327325386113, −1.89662193330354235609065944471, −0.30031630577067337599482413903, 1.22956292702983013668428263382, 2.30259967256612242491342171503, 3.47203153013234921401297197867, 4.32589373637895868643257683056, 4.80798341981885920811238398123, 6.13898765654880443285069397969, 6.73050437750008015806638949079, 7.24510965040544038635997531694, 8.302491159645706900020484982475, 8.853081095465138699184656903214

Graph of the $Z$-function along the critical line