Properties

Label 4-3024e2-1.1-c0e2-0-7
Degree $4$
Conductor $9144576$
Sign $1$
Analytic cond. $2.27760$
Root an. cond. $1.22848$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 4·13-s + 3·19-s + 25-s + 3·31-s − 2·37-s + 61-s − 73-s − 4·91-s + 2·97-s − 109-s − 121-s + 127-s + 131-s + 3·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 175-s + 179-s + 181-s + ⋯
L(s)  = 1  + 7-s − 4·13-s + 3·19-s + 25-s + 3·31-s − 2·37-s + 61-s − 73-s − 4·91-s + 2·97-s − 109-s − 121-s + 127-s + 131-s + 3·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 175-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9144576\)    =    \(2^{8} \cdot 3^{6} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(2.27760\)
Root analytic conductor: \(1.22848\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9144576,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.370679161\)
\(L(\frac12)\) \(\approx\) \(1.370679161\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( 1 - T + T^{2} \)
good5$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_1$ \( ( 1 + T )^{4} \)
17$C_2^2$ \( 1 - T^{2} + T^{4} \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_2$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.146693244305479073729174041854, −8.777566555501710606406243005225, −8.098636429704326038154948349676, −7.899457029760147055175703262582, −7.71639180747147600790581683550, −7.09409056540165933756285349416, −6.96206432296125985913692154291, −6.83733614216917915903911867863, −5.91158456864191027091344266199, −5.46284629901417818555903742545, −5.04013905747245170667003445527, −4.92993896973130290987753981774, −4.70943401038473946306786990320, −4.20143540156681904659524904468, −3.24928138171835903276612853841, −3.06206064419376458676994437108, −2.56752116197349661251024892676, −2.19324552249228171479764119394, −1.45063366023305627670041675194, −0.75961566223952875040576801058, 0.75961566223952875040576801058, 1.45063366023305627670041675194, 2.19324552249228171479764119394, 2.56752116197349661251024892676, 3.06206064419376458676994437108, 3.24928138171835903276612853841, 4.20143540156681904659524904468, 4.70943401038473946306786990320, 4.92993896973130290987753981774, 5.04013905747245170667003445527, 5.46284629901417818555903742545, 5.91158456864191027091344266199, 6.83733614216917915903911867863, 6.96206432296125985913692154291, 7.09409056540165933756285349416, 7.71639180747147600790581683550, 7.899457029760147055175703262582, 8.098636429704326038154948349676, 8.777566555501710606406243005225, 9.146693244305479073729174041854

Graph of the $Z$-function along the critical line