Properties

Label 2-300-100.63-c1-0-20
Degree $2$
Conductor $300$
Sign $0.999 + 0.0183i$
Analytic cond. $2.39551$
Root an. cond. $1.54774$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.33 + 0.472i)2-s + (−0.891 − 0.453i)3-s + (1.55 + 1.25i)4-s + (1.01 − 1.99i)5-s + (−0.973 − 1.02i)6-s + (0.189 + 0.189i)7-s + (1.47 + 2.41i)8-s + (0.587 + 0.809i)9-s + (2.29 − 2.17i)10-s + (2.68 − 3.69i)11-s + (−0.812 − 1.82i)12-s + (−1.66 − 0.263i)13-s + (0.163 + 0.342i)14-s + (−1.80 + 1.31i)15-s + (0.828 + 3.91i)16-s + (2.52 + 4.95i)17-s + ⋯
L(s)  = 1  + (0.942 + 0.333i)2-s + (−0.514 − 0.262i)3-s + (0.776 + 0.629i)4-s + (0.452 − 0.891i)5-s + (−0.397 − 0.418i)6-s + (0.0717 + 0.0717i)7-s + (0.522 + 0.852i)8-s + (0.195 + 0.269i)9-s + (0.724 − 0.689i)10-s + (0.808 − 1.11i)11-s + (−0.234 − 0.527i)12-s + (−0.462 − 0.0731i)13-s + (0.0436 + 0.0915i)14-s + (−0.466 + 0.340i)15-s + (0.207 + 0.978i)16-s + (0.611 + 1.20i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0183i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0183i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $0.999 + 0.0183i$
Analytic conductor: \(2.39551\)
Root analytic conductor: \(1.54774\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (163, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1/2),\ 0.999 + 0.0183i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.09375 - 0.0192113i\)
\(L(\frac12)\) \(\approx\) \(2.09375 - 0.0192113i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.33 - 0.472i)T \)
3 \( 1 + (0.891 + 0.453i)T \)
5 \( 1 + (-1.01 + 1.99i)T \)
good7 \( 1 + (-0.189 - 0.189i)T + 7iT^{2} \)
11 \( 1 + (-2.68 + 3.69i)T + (-3.39 - 10.4i)T^{2} \)
13 \( 1 + (1.66 + 0.263i)T + (12.3 + 4.01i)T^{2} \)
17 \( 1 + (-2.52 - 4.95i)T + (-9.99 + 13.7i)T^{2} \)
19 \( 1 + (0.186 - 0.574i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (3.67 - 0.581i)T + (21.8 - 7.10i)T^{2} \)
29 \( 1 + (-3.14 + 1.02i)T + (23.4 - 17.0i)T^{2} \)
31 \( 1 + (6.47 + 2.10i)T + (25.0 + 18.2i)T^{2} \)
37 \( 1 + (0.372 - 2.35i)T + (-35.1 - 11.4i)T^{2} \)
41 \( 1 + (9.30 - 6.76i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 + (-0.00980 + 0.00980i)T - 43iT^{2} \)
47 \( 1 + (1.17 - 2.31i)T + (-27.6 - 38.0i)T^{2} \)
53 \( 1 + (4.53 - 8.89i)T + (-31.1 - 42.8i)T^{2} \)
59 \( 1 + (-3.15 + 2.29i)T + (18.2 - 56.1i)T^{2} \)
61 \( 1 + (9.40 + 6.83i)T + (18.8 + 58.0i)T^{2} \)
67 \( 1 + (6.49 - 3.30i)T + (39.3 - 54.2i)T^{2} \)
71 \( 1 + (-12.6 + 4.09i)T + (57.4 - 41.7i)T^{2} \)
73 \( 1 + (0.770 + 4.86i)T + (-69.4 + 22.5i)T^{2} \)
79 \( 1 + (-4.17 - 12.8i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (3.42 + 6.72i)T + (-48.7 + 67.1i)T^{2} \)
89 \( 1 + (-4.20 + 5.78i)T + (-27.5 - 84.6i)T^{2} \)
97 \( 1 + (0.917 + 0.467i)T + (57.0 + 78.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.03483285136731522522639842469, −11.15388274078272252978656911604, −9.995475655358149810052775238567, −8.624396951468068564541425058943, −7.83630286714408935051368940875, −6.36882560552128221208520100877, −5.83196721817750222205306545404, −4.79808628670086740297392275250, −3.58032899241007717443825845386, −1.67394581514406536289974816778, 1.96554194397238350990804277236, 3.39264288156590478348342924653, 4.63284482831721960809009448779, 5.60926746588969588490660937658, 6.76820706159290407196838688545, 7.29319501371539943111898220055, 9.456753879696228798638628567648, 10.07126602143981105767447275208, 10.92705710494336995064850979108, 11.89226712250151306276149785889

Graph of the $Z$-function along the critical line