Properties

Label 2-3-3.2-c18-0-2
Degree $2$
Conductor $3$
Sign $1$
Analytic cond. $6.16158$
Root an. cond. $2.48225$
Motivic weight $18$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.96e4·3-s + 2.62e5·4-s + 7.75e7·7-s + 3.87e8·9-s − 5.15e9·12-s − 7.19e9·13-s + 6.87e10·16-s + 3.08e11·19-s − 1.52e12·21-s + 3.81e12·25-s − 7.62e12·27-s + 2.03e13·28-s − 5.00e13·31-s + 1.01e14·36-s − 2.32e13·37-s + 1.41e14·39-s − 7.30e14·43-s − 1.35e15·48-s + 4.38e15·49-s − 1.88e15·52-s − 6.07e15·57-s − 9.48e15·61-s + 3.00e16·63-s + 1.80e16·64-s − 4.17e16·67-s − 2.99e16·73-s − 7.50e16·75-s + ⋯
L(s)  = 1  − 3-s + 4-s + 1.92·7-s + 9-s − 12-s − 0.678·13-s + 16-s + 0.956·19-s − 1.92·21-s + 25-s − 27-s + 1.92·28-s − 1.89·31-s + 36-s − 0.178·37-s + 0.678·39-s − 1.45·43-s − 48-s + 2.69·49-s − 0.678·52-s − 0.956·57-s − 0.811·61-s + 1.92·63-s + 64-s − 1.53·67-s − 0.508·73-s − 75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3\)
Sign: $1$
Analytic conductor: \(6.16158\)
Root analytic conductor: \(2.48225\)
Motivic weight: \(18\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3} (2, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3,\ (\ :9),\ 1)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(1.709371284\)
\(L(\frac12)\) \(\approx\) \(1.709371284\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p^{9} T \)
good2 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
5 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
7 \( 1 - 77549186 T + p^{18} T^{2} \)
11 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
13 \( 1 + 7197541846 T + p^{18} T^{2} \)
17 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
19 \( 1 - 308559680858 T + p^{18} T^{2} \)
23 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
29 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
31 \( 1 + 50018992173358 T + p^{18} T^{2} \)
37 \( 1 + 23240947030054 T + p^{18} T^{2} \)
41 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
43 \( 1 + 730385642547286 T + p^{18} T^{2} \)
47 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
53 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
59 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
61 \( 1 + 9487161099916918 T + p^{18} T^{2} \)
67 \( 1 + 41747295001607494 T + p^{18} T^{2} \)
71 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
73 \( 1 + 29908998244279726 T + p^{18} T^{2} \)
79 \( 1 - 140655567501204338 T + p^{18} T^{2} \)
83 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
89 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
97 \( 1 - 140873967896062466 T + p^{18} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.77854477956418141031559305259, −20.48082782010022655435302256267, −18.09964511267097949481694223101, −16.69456671997730106254388482187, −14.87218570319768166537777733204, −11.93961335683160982463994356361, −10.84222534393047283285836018935, −7.40714737867680867729692971268, −5.18282147434873618398849598591, −1.54937755958486096374629988010, 1.54937755958486096374629988010, 5.18282147434873618398849598591, 7.40714737867680867729692971268, 10.84222534393047283285836018935, 11.93961335683160982463994356361, 14.87218570319768166537777733204, 16.69456671997730106254388482187, 18.09964511267097949481694223101, 20.48082782010022655435302256267, 21.77854477956418141031559305259

Graph of the $Z$-function along the critical line