Properties

Label 8-2940e4-1.1-c1e4-0-12
Degree $8$
Conductor $7.471\times 10^{13}$
Sign $1$
Analytic cond. $303737.$
Root an. cond. $4.84520$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 9-s − 2·11-s + 4·15-s + 2·17-s + 6·19-s + 2·23-s + 25-s − 2·27-s + 20·29-s + 2·31-s − 4·33-s + 4·37-s + 12·41-s + 8·43-s + 2·45-s + 12·47-s + 4·51-s + 4·53-s − 4·55-s + 12·57-s + 6·59-s + 16·61-s + 4·67-s + 4·69-s + 44·71-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s + 1/3·9-s − 0.603·11-s + 1.03·15-s + 0.485·17-s + 1.37·19-s + 0.417·23-s + 1/5·25-s − 0.384·27-s + 3.71·29-s + 0.359·31-s − 0.696·33-s + 0.657·37-s + 1.87·41-s + 1.21·43-s + 0.298·45-s + 1.75·47-s + 0.560·51-s + 0.549·53-s − 0.539·55-s + 1.58·57-s + 0.781·59-s + 2.04·61-s + 0.488·67-s + 0.481·69-s + 5.22·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(303737.\)
Root analytic conductor: \(4.84520\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(19.63508575\)
\(L(\frac12)\) \(\approx\) \(19.63508575\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7 \( 1 \)
good11$D_4\times C_2$ \( 1 + 2 T - 12 T^{2} - 12 T^{3} + 91 T^{4} - 12 p T^{5} - 12 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 + 19 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 2 T - 24 T^{2} + 12 T^{3} + 427 T^{4} + 12 p T^{5} - 24 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 - 6 T + 17 T^{2} + 6 p T^{3} - 36 p T^{4} + 6 p^{2} T^{5} + 17 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 2 T - 36 T^{2} + 12 T^{3} + 979 T^{4} + 12 p T^{5} - 36 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 10 T + 76 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 2 T - p T^{2} + 54 T^{3} + 140 T^{4} + 54 p T^{5} - p^{3} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 4 T - 55 T^{2} + 12 T^{3} + 3080 T^{4} + 12 p T^{5} - 55 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 6 T + 28 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 4 T + 27 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 6 T - 11 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 4 T - 66 T^{2} + 96 T^{3} + 3067 T^{4} + 96 p T^{5} - 66 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 - 6 T - 28 T^{2} + 324 T^{3} - 1509 T^{4} + 324 p T^{5} - 28 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 8 T + 3 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 4 T - 115 T^{2} + 12 T^{3} + 11600 T^{4} + 12 p T^{5} - 115 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 22 T + 256 T^{2} - 22 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^3$ \( 1 + 29 T^{2} - 4488 T^{4} + 29 p^{2} T^{6} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 6 T - 103 T^{2} + 114 T^{3} + 10236 T^{4} + 114 p T^{5} - 103 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 6 T + 112 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 2 T - 348 T^{3} - 8261 T^{4} - 348 p T^{5} + 2 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.25668516130070046824792996135, −5.96712907808048652741072610139, −5.75248944805588621255045944045, −5.65691514907184834118000207434, −5.43682007160980287065159545501, −4.97914168325719814637447816266, −4.91476910805713739448337287771, −4.89333694703011103219181705200, −4.82314435419983571841355968577, −4.05643603107130952931830118010, −4.04036076174617339072124236578, −4.03006139015354495812346538081, −3.71832979872469511553207423671, −3.22277030184530016251691626455, −3.11748252177924021803271974953, −3.05806467347491425629041466476, −2.66696997131315755703926017989, −2.43700220885002287821600739176, −2.22620771641580654064672179646, −2.14146467057521404832607223079, −2.01039179605024059468063670494, −1.08502021258373310026843029183, −0.941404234055516000169391459426, −0.835232358830141746612723653538, −0.76163827925805889287953545926, 0.76163827925805889287953545926, 0.835232358830141746612723653538, 0.941404234055516000169391459426, 1.08502021258373310026843029183, 2.01039179605024059468063670494, 2.14146467057521404832607223079, 2.22620771641580654064672179646, 2.43700220885002287821600739176, 2.66696997131315755703926017989, 3.05806467347491425629041466476, 3.11748252177924021803271974953, 3.22277030184530016251691626455, 3.71832979872469511553207423671, 4.03006139015354495812346538081, 4.04036076174617339072124236578, 4.05643603107130952931830118010, 4.82314435419983571841355968577, 4.89333694703011103219181705200, 4.91476910805713739448337287771, 4.97914168325719814637447816266, 5.43682007160980287065159545501, 5.65691514907184834118000207434, 5.75248944805588621255045944045, 5.96712907808048652741072610139, 6.25668516130070046824792996135

Graph of the $Z$-function along the critical line