Properties

Label 8-2940e4-1.1-c1e4-0-9
Degree $8$
Conductor $7.471\times 10^{13}$
Sign $1$
Analytic cond. $303737.$
Root an. cond. $4.84520$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 9-s + 8·11-s + 12·19-s + 5·25-s − 24·29-s + 4·31-s + 32·41-s + 4·45-s + 32·55-s + 8·59-s − 28·61-s + 16·89-s + 48·95-s + 8·99-s − 32·101-s − 28·109-s + 38·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s − 96·145-s + 149-s + 151-s + 16·155-s + ⋯
L(s)  = 1  + 1.78·5-s + 1/3·9-s + 2.41·11-s + 2.75·19-s + 25-s − 4.45·29-s + 0.718·31-s + 4.99·41-s + 0.596·45-s + 4.31·55-s + 1.04·59-s − 3.58·61-s + 1.69·89-s + 4.92·95-s + 0.804·99-s − 3.18·101-s − 2.68·109-s + 3.45·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 7.97·145-s + 0.0819·149-s + 0.0813·151-s + 1.28·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(303737.\)
Root analytic conductor: \(4.84520\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.666453097\)
\(L(\frac12)\) \(\approx\) \(7.666453097\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2^2$ \( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good11$C_2^2$ \( ( 1 - 4 T + 5 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 6 T + 17 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 42 T^{2} + 1235 T^{4} + 42 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 2 T - 27 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^3$ \( 1 + 58 T^{2} + 1995 T^{4} + 58 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 78 T^{2} + 3875 T^{4} + 78 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 + 70 T^{2} + 2091 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 - 4 T - 43 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \)
67$C_2^3$ \( 1 + 118 T^{2} + 9435 T^{4} + 118 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )( 1 + 143 T^{2} + p^{2} T^{4} ) \)
79$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 90 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 8 T - 25 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.17466968381565439307023756981, −5.90005658324623876628681226669, −5.83025544126487308994576808427, −5.70188717355671023038426728772, −5.43403797619505699826815701132, −5.40775090376249462953154215922, −5.05321881105947221911586007869, −4.72515909994994945672842145294, −4.59299321641505539406685428158, −4.19025614488811868146398182118, −4.13531291866282157797152923334, −3.97178550668080515087729535371, −3.56750328386962050365295764238, −3.56523953075540899365414786973, −3.31976402014669517966946932384, −2.88034595254221481010795903970, −2.72846656090350038755280325576, −2.35611428909548945271352882371, −2.21854360894033444636621109786, −1.95637795947263873429893611643, −1.45855051364898902012861049767, −1.39276657961476286445178085952, −1.20603940490055246637402810889, −0.999529305838686521582577084870, −0.34040283102022453510269112234, 0.34040283102022453510269112234, 0.999529305838686521582577084870, 1.20603940490055246637402810889, 1.39276657961476286445178085952, 1.45855051364898902012861049767, 1.95637795947263873429893611643, 2.21854360894033444636621109786, 2.35611428909548945271352882371, 2.72846656090350038755280325576, 2.88034595254221481010795903970, 3.31976402014669517966946932384, 3.56523953075540899365414786973, 3.56750328386962050365295764238, 3.97178550668080515087729535371, 4.13531291866282157797152923334, 4.19025614488811868146398182118, 4.59299321641505539406685428158, 4.72515909994994945672842145294, 5.05321881105947221911586007869, 5.40775090376249462953154215922, 5.43403797619505699826815701132, 5.70188717355671023038426728772, 5.83025544126487308994576808427, 5.90005658324623876628681226669, 6.17466968381565439307023756981

Graph of the $Z$-function along the critical line