Properties

Label 4-294e2-1.1-c5e2-0-8
Degree $4$
Conductor $86436$
Sign $1$
Analytic cond. $2223.39$
Root an. cond. $6.86679$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 9·3-s − 66·5-s + 36·6-s + 64·8-s + 264·10-s + 60·11-s + 1.31e3·13-s + 594·15-s − 256·16-s − 414·17-s + 956·19-s − 240·22-s − 600·23-s − 576·24-s + 3.12e3·25-s − 5.26e3·26-s + 729·27-s + 1.11e4·29-s − 2.37e3·30-s − 3.59e3·31-s − 540·33-s + 1.65e3·34-s + 8.45e3·37-s − 3.82e3·38-s − 1.18e4·39-s − 4.22e3·40-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1.18·5-s + 0.408·6-s + 0.353·8-s + 0.834·10-s + 0.149·11-s + 2.15·13-s + 0.681·15-s − 1/4·16-s − 0.347·17-s + 0.607·19-s − 0.105·22-s − 0.236·23-s − 0.204·24-s + 25-s − 1.52·26-s + 0.192·27-s + 2.46·29-s − 0.481·30-s − 0.671·31-s − 0.0863·33-s + 0.245·34-s + 1.01·37-s − 0.429·38-s − 1.24·39-s − 0.417·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(86436\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(2223.39\)
Root analytic conductor: \(6.86679\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 86436,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8173334992\)
\(L(\frac12)\) \(\approx\) \(0.8173334992\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T + p^{4} T^{2} \)
3$C_2$ \( 1 + p^{2} T + p^{4} T^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 + 66 T + 1231 T^{2} + 66 p^{5} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 60 T - 157451 T^{2} - 60 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2$ \( ( 1 - 658 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 414 T - 1248461 T^{2} + 414 p^{5} T^{3} + p^{10} T^{4} \)
19$C_2^2$ \( 1 - 956 T - 1562163 T^{2} - 956 p^{5} T^{3} + p^{10} T^{4} \)
23$C_2^2$ \( 1 + 600 T - 6076343 T^{2} + 600 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2$ \( ( 1 - 5574 T + p^{5} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 3592 T - 15726687 T^{2} + 3592 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2^2$ \( 1 - 8458 T + 2193807 T^{2} - 8458 p^{5} T^{3} + p^{10} T^{4} \)
41$C_2$ \( ( 1 + 19194 T + p^{5} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 13316 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 19680 T + 157957393 T^{2} + 19680 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2^2$ \( 1 - 31266 T + 559367263 T^{2} - 31266 p^{5} T^{3} + p^{10} T^{4} \)
59$C_2^2$ \( 1 - 26340 T - 21128699 T^{2} - 26340 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 + 31090 T + 121991799 T^{2} + 31090 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 - 16804 T - 1067750691 T^{2} - 16804 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 - 6120 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 25558 T - 1419860229 T^{2} + 25558 p^{5} T^{3} + p^{10} T^{4} \)
79$C_2^2$ \( 1 + 74408 T + 2459494065 T^{2} + 74408 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2$ \( ( 1 - 6468 T + p^{5} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 32742 T - 4512020885 T^{2} + 32742 p^{5} T^{3} + p^{10} T^{4} \)
97$C_2$ \( ( 1 + 166082 T + p^{5} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16405690785750962517957729520, −10.59666994623695620131299422592, −10.51185963827847038168948863488, −9.731704632076195621139454986724, −9.241316422756062759757480390361, −8.544790368079452624790885755570, −8.291098781389758607023202823617, −8.187325767977830632337476066303, −7.28652246979139996360830080716, −6.61929038410843121444332952987, −6.61750436039157874416055478279, −5.64158934229286571932637687758, −5.26319697609641260632932560471, −4.26530410902136749831566192152, −4.16073735690507415198346542558, −3.33930705836991288869032007897, −2.77355139327966991472389943108, −1.46689882851051516437205575695, −1.07341417662103448072030332220, −0.35789569649946744305125083339, 0.35789569649946744305125083339, 1.07341417662103448072030332220, 1.46689882851051516437205575695, 2.77355139327966991472389943108, 3.33930705836991288869032007897, 4.16073735690507415198346542558, 4.26530410902136749831566192152, 5.26319697609641260632932560471, 5.64158934229286571932637687758, 6.61750436039157874416055478279, 6.61929038410843121444332952987, 7.28652246979139996360830080716, 8.187325767977830632337476066303, 8.291098781389758607023202823617, 8.544790368079452624790885755570, 9.241316422756062759757480390361, 9.731704632076195621139454986724, 10.51185963827847038168948863488, 10.59666994623695620131299422592, 11.16405690785750962517957729520

Graph of the $Z$-function along the critical line