Properties

Label 4-294e2-1.1-c3e2-0-1
Degree $4$
Conductor $86436$
Sign $1$
Analytic cond. $300.903$
Root an. cond. $4.16492$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·3-s − 6·5-s + 6·6-s − 8·8-s − 12·10-s + 30·11-s − 106·13-s − 18·15-s − 16·16-s − 84·17-s − 97·19-s + 60·22-s − 84·23-s − 24·24-s + 125·25-s − 212·26-s − 27·27-s − 360·29-s − 36·30-s + 179·31-s + 90·33-s − 168·34-s + 145·37-s − 194·38-s − 318·39-s + 48·40-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 0.536·5-s + 0.408·6-s − 0.353·8-s − 0.379·10-s + 0.822·11-s − 2.26·13-s − 0.309·15-s − 1/4·16-s − 1.19·17-s − 1.17·19-s + 0.581·22-s − 0.761·23-s − 0.204·24-s + 25-s − 1.59·26-s − 0.192·27-s − 2.30·29-s − 0.219·30-s + 1.03·31-s + 0.474·33-s − 0.847·34-s + 0.644·37-s − 0.828·38-s − 1.30·39-s + 0.189·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(86436\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(300.903\)
Root analytic conductor: \(4.16492\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 86436,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.112792626\)
\(L(\frac12)\) \(\approx\) \(1.112792626\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
3$C_2$ \( 1 - p T + p^{2} T^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 + 6 T - 89 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 30 T - 431 T^{2} - 30 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 53 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 84 T + 2143 T^{2} + 84 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 97 T + 2550 T^{2} + 97 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 + 84 T - 5111 T^{2} + 84 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 180 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 179 T + 2250 T^{2} - 179 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 145 T - 29628 T^{2} - 145 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 126 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 325 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 366 T + 30133 T^{2} + 366 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 768 T + 440947 T^{2} - 768 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 + 264 T - 135683 T^{2} + 264 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 818 T + 442143 T^{2} - 818 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 523 T - 27234 T^{2} - 523 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 342 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 43 T - 387168 T^{2} + 43 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 - 1171 T + 878202 T^{2} - 1171 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 - 810 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 600 T - 344969 T^{2} + 600 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 + 386 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64412085671395109896002696873, −11.32635511014385337495089751103, −10.71731277542905959397216823196, −9.948213639733258967646614336823, −9.809996676667652608263405024575, −9.173443539561046308474640757567, −8.695430511141415806803508417600, −8.255279729075972079095142687935, −7.75973394142389535973324429192, −7.02165032012570114678519278852, −6.77653210343503749617671502384, −6.24330162926711574691797188465, −5.27645817280584977826617447898, −4.93341377206260618906589441098, −4.30948530926215371258938081246, −3.86978267469246152517173385039, −3.20729547127759852639819060712, −2.31897163716872579123307128941, −1.97283841003663071407784653991, −0.31737253894562537102136508648, 0.31737253894562537102136508648, 1.97283841003663071407784653991, 2.31897163716872579123307128941, 3.20729547127759852639819060712, 3.86978267469246152517173385039, 4.30948530926215371258938081246, 4.93341377206260618906589441098, 5.27645817280584977826617447898, 6.24330162926711574691797188465, 6.77653210343503749617671502384, 7.02165032012570114678519278852, 7.75973394142389535973324429192, 8.255279729075972079095142687935, 8.695430511141415806803508417600, 9.173443539561046308474640757567, 9.809996676667652608263405024575, 9.948213639733258967646614336823, 10.71731277542905959397216823196, 11.32635511014385337495089751103, 11.64412085671395109896002696873

Graph of the $Z$-function along the critical line