Properties

Label 4-294e2-1.1-c3e2-0-0
Degree $4$
Conductor $86436$
Sign $1$
Analytic cond. $300.903$
Root an. cond. $4.16492$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 6·5-s − 6·6-s − 8·8-s + 12·10-s − 12·11-s − 76·13-s − 18·15-s − 16·16-s − 126·17-s + 20·19-s − 24·22-s − 168·23-s + 24·24-s + 125·25-s − 152·26-s + 27·27-s + 60·29-s − 36·30-s − 88·31-s + 36·33-s − 252·34-s − 254·37-s + 40·38-s + 228·39-s − 48·40-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.536·5-s − 0.408·6-s − 0.353·8-s + 0.379·10-s − 0.328·11-s − 1.62·13-s − 0.309·15-s − 1/4·16-s − 1.79·17-s + 0.241·19-s − 0.232·22-s − 1.52·23-s + 0.204·24-s + 25-s − 1.14·26-s + 0.192·27-s + 0.384·29-s − 0.219·30-s − 0.509·31-s + 0.189·33-s − 1.27·34-s − 1.12·37-s + 0.170·38-s + 0.936·39-s − 0.189·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(86436\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(300.903\)
Root analytic conductor: \(4.16492\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 86436,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5653258753\)
\(L(\frac12)\) \(\approx\) \(0.5653258753\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
3$C_2$ \( 1 + p T + p^{2} T^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 - 6 T - 89 T^{2} - 6 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 12 T - 1187 T^{2} + 12 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 38 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 126 T + 10963 T^{2} + 126 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 20 T - 6459 T^{2} - 20 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 + 168 T + 16057 T^{2} + 168 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 30 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 88 T - 22047 T^{2} + 88 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 + 254 T + 13863 T^{2} + 254 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 42 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 52 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 96 T - 94607 T^{2} + 96 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 198 T - 109673 T^{2} + 198 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 + 660 T + 230221 T^{2} + 660 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 538 T + 62463 T^{2} + 538 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 884 T + 480693 T^{2} + 884 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 792 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 218 T - 341493 T^{2} - 218 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 - 520 T - 222639 T^{2} - 520 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 - 492 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 810 T - 48869 T^{2} - 810 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 + 1154 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.15216547835482556883230330950, −11.05662783862247437044188632211, −10.74544395123910421163138073958, −10.23664866109193176100804409578, −9.790468505158552916407266786254, −9.115861657262346682762043039465, −9.017334210720273120144212115221, −8.043162932754414211602996240800, −7.78120649299096865921239286355, −6.79539700521427949577129819070, −6.72455575328038498838498487116, −6.07233260066786283124787533782, −5.44477504019580419359726111075, −4.87102919833459958809005499664, −4.72013885712933269044801404359, −3.91458159202108903596718026235, −3.05458293498778730092072136397, −2.36501203837609088813229901009, −1.76082689393026241595696109359, −0.24399738006209510674880609782, 0.24399738006209510674880609782, 1.76082689393026241595696109359, 2.36501203837609088813229901009, 3.05458293498778730092072136397, 3.91458159202108903596718026235, 4.72013885712933269044801404359, 4.87102919833459958809005499664, 5.44477504019580419359726111075, 6.07233260066786283124787533782, 6.72455575328038498838498487116, 6.79539700521427949577129819070, 7.78120649299096865921239286355, 8.043162932754414211602996240800, 9.017334210720273120144212115221, 9.115861657262346682762043039465, 9.790468505158552916407266786254, 10.23664866109193176100804409578, 10.74544395123910421163138073958, 11.05662783862247437044188632211, 12.15216547835482556883230330950

Graph of the $Z$-function along the critical line