L(s) = 1 | + (−0.707 − 1.22i)2-s + (1.5 + 0.866i)3-s + (−0.999 + 1.73i)4-s + (−0.878 + 0.507i)5-s − 2.44i·6-s + 2.82·8-s + (1.5 + 2.59i)9-s + (1.24 + 0.717i)10-s + (5.12 − 8.87i)11-s + (−2.99 + 1.73i)12-s + 8.95i·13-s − 1.75·15-s + (−2.00 − 3.46i)16-s + (26.3 + 15.2i)17-s + (2.12 − 3.67i)18-s + (13.9 − 8.06i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.5 + 0.288i)3-s + (−0.249 + 0.433i)4-s + (−0.175 + 0.101i)5-s − 0.408i·6-s + 0.353·8-s + (0.166 + 0.288i)9-s + (0.124 + 0.0717i)10-s + (0.465 − 0.806i)11-s + (−0.249 + 0.144i)12-s + 0.689i·13-s − 0.117·15-s + (−0.125 − 0.216i)16-s + (1.54 + 0.894i)17-s + (0.117 − 0.204i)18-s + (0.735 − 0.424i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0633i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.997 + 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.60896 - 0.0510011i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.60896 - 0.0510011i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 1.22i)T \) |
| 3 | \( 1 + (-1.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.878 - 0.507i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-5.12 + 8.87i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 - 8.95iT - 169T^{2} \) |
| 17 | \( 1 + (-26.3 - 15.2i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-13.9 + 8.06i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-3.36 - 5.82i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 30T + 841T^{2} \) |
| 31 | \( 1 + (-43.4 - 25.0i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (15.4 + 26.7i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 7.10iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 74.4T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-50.4 + 29.1i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-35.4 + 61.4i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (0.426 + 0.246i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (2.48 - 1.43i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (13.5 - 23.4i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 50.6T + 5.04e3T^{2} \) |
| 73 | \( 1 + (61.1 + 35.3i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (66.9 + 115. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 104. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (125. - 72.4i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 100. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59050221089565412216591654562, −10.48297813315233049027606874076, −9.735499232597920653733687104553, −8.758477605631697834034626620574, −8.022004803403390064516972442992, −6.82542589359470167849095017927, −5.34833976106795719295254590057, −3.89061378311851311645173330816, −3.05941227294398664619558387192, −1.33236585970647825780478904007,
1.06908117758609312279566108070, 2.93733282214066670633627877269, 4.46623690828482854975893324571, 5.70143346467320353274644825730, 6.90260381356856843820718693944, 7.76782770921302616225797303082, 8.456441721794619367145261575727, 9.757548484125119138277587043000, 10.11922641284902654392847094710, 11.83459920364975129257971503555