Properties

Label 12-2925e6-1.1-c1e6-0-3
Degree $12$
Conductor $6.263\times 10^{20}$
Sign $1$
Analytic cond. $1.62337\times 10^{8}$
Root an. cond. $4.83282$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·11-s + 7·16-s − 12·19-s + 36·29-s + 12·31-s − 2·41-s + 4·44-s + 9·49-s − 16·59-s + 18·61-s − 4·64-s + 22·71-s + 24·76-s − 10·79-s + 22·89-s − 16·101-s − 32·109-s − 72·116-s − 31·121-s − 24·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 4-s − 0.603·11-s + 7/4·16-s − 2.75·19-s + 6.68·29-s + 2.15·31-s − 0.312·41-s + 0.603·44-s + 9/7·49-s − 2.08·59-s + 2.30·61-s − 1/2·64-s + 2.61·71-s + 2.75·76-s − 1.12·79-s + 2.33·89-s − 1.59·101-s − 3.06·109-s − 6.68·116-s − 2.81·121-s − 2.15·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 5^{12} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 5^{12} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(3^{12} \cdot 5^{12} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(1.62337\times 10^{8}\)
Root analytic conductor: \(4.83282\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 3^{12} \cdot 5^{12} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(8.380919251\)
\(L(\frac12)\) \(\approx\) \(8.380919251\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
13 \( ( 1 + T^{2} )^{3} \)
good2 \( ( 1 - p T + 3 T^{2} - 3 p T^{3} + 3 p T^{4} - p^{3} T^{5} + p^{3} T^{6} )( 1 + p T + 3 T^{2} + 3 p T^{3} + 3 p T^{4} + p^{3} T^{5} + p^{3} T^{6} ) \)
7 \( 1 - 9 T^{2} + 5 p T^{4} - 38 T^{6} + 5 p^{3} T^{8} - 9 p^{4} T^{10} + p^{6} T^{12} \)
11 \( ( 1 + T + 17 T^{2} + 38 T^{3} + 17 p T^{4} + p^{2} T^{5} + p^{3} T^{6} )^{2} \)
17 \( 1 - 37 T^{2} + 1091 T^{4} - 19758 T^{6} + 1091 p^{2} T^{8} - 37 p^{4} T^{10} + p^{6} T^{12} \)
19 \( ( 1 + 6 T + 41 T^{2} + 164 T^{3} + 41 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
23 \( 1 - 57 T^{2} + 2531 T^{4} - 64070 T^{6} + 2531 p^{2} T^{8} - 57 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 - 6 T + p T^{2} )^{6} \)
31 \( ( 1 - 6 T + 77 T^{2} - 340 T^{3} + 77 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( 1 - 53 T^{2} + 3739 T^{4} - 133022 T^{6} + 3739 p^{2} T^{8} - 53 p^{4} T^{10} + p^{6} T^{12} \)
41 \( ( 1 + T + 91 T^{2} + 6 T^{3} + 91 p T^{4} + p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( 1 - 34 T^{2} + 1751 T^{4} - 167484 T^{6} + 1751 p^{2} T^{8} - 34 p^{4} T^{10} + p^{6} T^{12} \)
47 \( 1 - 118 T^{2} + 6399 T^{4} - 283732 T^{6} + 6399 p^{2} T^{8} - 118 p^{4} T^{10} + p^{6} T^{12} \)
53 \( 1 - 213 T^{2} + 20027 T^{4} - 1223966 T^{6} + 20027 p^{2} T^{8} - 213 p^{4} T^{10} + p^{6} T^{12} \)
59 \( ( 1 + 8 T + 129 T^{2} + 816 T^{3} + 129 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 - 9 T + 71 T^{2} - 254 T^{3} + 71 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 258 T^{2} + 33863 T^{4} - 2806460 T^{6} + 33863 p^{2} T^{8} - 258 p^{4} T^{10} + p^{6} T^{12} \)
71 \( ( 1 - 11 T + 237 T^{2} - 1530 T^{3} + 237 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 202 T^{2} + 25151 T^{4} - 2178828 T^{6} + 25151 p^{2} T^{8} - 202 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 5 T + 189 T^{2} + 854 T^{3} + 189 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 338 T^{2} + 54567 T^{4} - 5528348 T^{6} + 54567 p^{2} T^{8} - 338 p^{4} T^{10} + p^{6} T^{12} \)
89 \( ( 1 - 11 T + 275 T^{2} - 1954 T^{3} + 275 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
97 \( 1 - 309 T^{2} + 53987 T^{4} - 6424526 T^{6} + 53987 p^{2} T^{8} - 309 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.61936923047711598933768929298, −4.44997720831296023537822194879, −4.15871186650619138345966010974, −4.06578180950856465913525993261, −4.03448158768539227749595663499, −3.98745301985280604179345664748, −3.68593883160342085805350701235, −3.50663569894312161622476640867, −3.41103778337391791688884707364, −2.98667997836064838875416576919, −2.98664247667111722803684783297, −2.72285362953311430833674854038, −2.67969250485835735414180795648, −2.65773800150072077437563291683, −2.54864403268418432952637271477, −2.31465294652102896629937440117, −1.99289949172320428548259218508, −1.73920555871398943119023479081, −1.60482752717576631144520464702, −1.37767907091358237423272037090, −1.09969763973424146601150858720, −0.883812547088251498369632984933, −0.63901267862910274700415173595, −0.56946019834747387291411358984, −0.40629379719995047720346145303, 0.40629379719995047720346145303, 0.56946019834747387291411358984, 0.63901267862910274700415173595, 0.883812547088251498369632984933, 1.09969763973424146601150858720, 1.37767907091358237423272037090, 1.60482752717576631144520464702, 1.73920555871398943119023479081, 1.99289949172320428548259218508, 2.31465294652102896629937440117, 2.54864403268418432952637271477, 2.65773800150072077437563291683, 2.67969250485835735414180795648, 2.72285362953311430833674854038, 2.98664247667111722803684783297, 2.98667997836064838875416576919, 3.41103778337391791688884707364, 3.50663569894312161622476640867, 3.68593883160342085805350701235, 3.98745301985280604179345664748, 4.03448158768539227749595663499, 4.06578180950856465913525993261, 4.15871186650619138345966010974, 4.44997720831296023537822194879, 4.61936923047711598933768929298

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.