L(s) = 1 | + 2.41i·2-s − 3.82·4-s + 4.82i·7-s − 4.41i·8-s − 3.41·11-s + i·13-s − 11.6·14-s + 2.99·16-s − 0.828i·17-s − 0.585·19-s − 8.24i·22-s + 1.41i·23-s − 2.41·26-s − 18.4i·28-s − 5.65·29-s + ⋯ |
L(s) = 1 | + 1.70i·2-s − 1.91·4-s + 1.82i·7-s − 1.56i·8-s − 1.02·11-s + 0.277i·13-s − 3.11·14-s + 0.749·16-s − 0.200i·17-s − 0.134·19-s − 1.75i·22-s + 0.294i·23-s − 0.473·26-s − 3.49i·28-s − 1.05·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3482334367\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3482334367\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 2 | \( 1 - 2.41iT - 2T^{2} \) |
| 7 | \( 1 - 4.82iT - 7T^{2} \) |
| 11 | \( 1 + 3.41T + 11T^{2} \) |
| 17 | \( 1 + 0.828iT - 17T^{2} \) |
| 19 | \( 1 + 0.585T + 19T^{2} \) |
| 23 | \( 1 - 1.41iT - 23T^{2} \) |
| 29 | \( 1 + 5.65T + 29T^{2} \) |
| 31 | \( 1 - 1.75T + 31T^{2} \) |
| 37 | \( 1 + 8.48iT - 37T^{2} \) |
| 41 | \( 1 - 3.17T + 41T^{2} \) |
| 43 | \( 1 - 11.0iT - 43T^{2} \) |
| 47 | \( 1 - 4.82iT - 47T^{2} \) |
| 53 | \( 1 - 2.48iT - 53T^{2} \) |
| 59 | \( 1 - 1.75T + 59T^{2} \) |
| 61 | \( 1 + 8T + 61T^{2} \) |
| 67 | \( 1 + 2iT - 67T^{2} \) |
| 71 | \( 1 + 11.8T + 71T^{2} \) |
| 73 | \( 1 + 8.48iT - 73T^{2} \) |
| 79 | \( 1 - 8.48T + 79T^{2} \) |
| 83 | \( 1 + 3.17iT - 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + 7.65iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.210433232528545517996952435293, −8.540688593338095718725537628900, −7.82869359105809546178662645937, −7.31969057837638895788842891122, −6.14004013680975663189727613131, −5.88917254452359214267892383475, −5.14240425184575759326624624004, −4.47245478180240232235890475515, −3.05826945255931175800205312836, −2.08794382190561377713461790859,
0.12222083067455853538549150965, 1.07481637229153370432379913790, 2.15061489877227527466998816280, 3.17732553418852512737806657407, 3.85372944223762213692159515795, 4.54814129428056655775229285992, 5.35086408500991917908583096351, 6.65447427738839426051983747430, 7.49650927844277435985215191707, 8.172294389468884886044883633176