Properties

Label 8-2925e4-1.1-c1e4-0-7
Degree $8$
Conductor $7.320\times 10^{13}$
Sign $1$
Analytic cond. $297585.$
Root an. cond. $4.83282$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·11-s − 3·16-s + 4·19-s + 12·29-s + 24·31-s + 6·41-s − 2·44-s + 7·49-s − 48·59-s − 2·61-s + 3·64-s + 50·71-s − 4·76-s + 6·79-s − 18·89-s + 8·101-s + 8·109-s − 12·116-s − 33·121-s − 24·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1/2·4-s + 0.603·11-s − 3/4·16-s + 0.917·19-s + 2.22·29-s + 4.31·31-s + 0.937·41-s − 0.301·44-s + 49-s − 6.24·59-s − 0.256·61-s + 3/8·64-s + 5.93·71-s − 0.458·76-s + 0.675·79-s − 1.90·89-s + 0.796·101-s + 0.766·109-s − 1.11·116-s − 3·121-s − 2.15·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(297585.\)
Root analytic conductor: \(4.83282\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.243526103\)
\(L(\frac12)\) \(\approx\) \(6.243526103\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$D_4\times C_2$ \( 1 + T^{2} + p^{2} T^{4} + p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 - p T^{2} + 4 T^{4} - p^{3} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 - T + 18 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 59 T^{2} + 1444 T^{4} - 59 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 2 T + 22 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 43 T^{2} + 1176 T^{4} - 43 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 6 T + 50 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
37$D_4\times C_2$ \( 1 - 31 T^{2} - 120 T^{4} - 31 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 3 T + 80 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 136 T^{2} + 8254 T^{4} - 136 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 56 T^{2} + 1870 T^{4} - 56 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 131 T^{2} + 9564 T^{4} - 131 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
61$D_{4}$ \( ( 1 + T + 84 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 + 40 T^{2} + 8766 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 25 T + 294 T^{2} - 25 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
79$D_{4}$ \( ( 1 - 3 T + 122 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 9 T + 160 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 41 T^{2} + 14032 T^{4} + 41 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.21114224045757105056633516331, −6.18025790019049081302577031680, −5.83134494950060801168964073531, −5.56897309007758295193014550877, −5.41345288048321806826107657821, −4.96770664861745775233450572262, −4.92981475752757559947787239089, −4.70138885877770536539598188081, −4.68054411481477592986656529344, −4.38556998991923175014353566161, −4.22486912221671974006574538213, −3.95595790217648379341153352371, −3.71095809048708001844004660012, −3.48500939126526816548951121997, −3.12827078831167771823960325303, −2.89237118834506148333026905213, −2.69569270250612422945595442605, −2.57499287530024891199950292993, −2.50936491346950758331541196951, −1.74959036685978740967320433124, −1.66074262494975236278290587920, −1.38175453805479972862930024276, −0.874020332012693529786356045394, −0.66462675180913818179018144230, −0.54342970061074038321036766984, 0.54342970061074038321036766984, 0.66462675180913818179018144230, 0.874020332012693529786356045394, 1.38175453805479972862930024276, 1.66074262494975236278290587920, 1.74959036685978740967320433124, 2.50936491346950758331541196951, 2.57499287530024891199950292993, 2.69569270250612422945595442605, 2.89237118834506148333026905213, 3.12827078831167771823960325303, 3.48500939126526816548951121997, 3.71095809048708001844004660012, 3.95595790217648379341153352371, 4.22486912221671974006574538213, 4.38556998991923175014353566161, 4.68054411481477592986656529344, 4.70138885877770536539598188081, 4.92981475752757559947787239089, 4.96770664861745775233450572262, 5.41345288048321806826107657821, 5.56897309007758295193014550877, 5.83134494950060801168964073531, 6.18025790019049081302577031680, 6.21114224045757105056633516331

Graph of the $Z$-function along the critical line