Properties

Label 8-2925e4-1.1-c1e4-0-6
Degree $8$
Conductor $7.320\times 10^{13}$
Sign $1$
Analytic cond. $297585.$
Root an. cond. $4.83282$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·11-s − 3·16-s + 4·19-s − 12·29-s + 24·31-s − 6·41-s + 2·44-s + 7·49-s + 48·59-s − 2·61-s + 3·64-s − 50·71-s − 4·76-s + 6·79-s + 18·89-s − 8·101-s + 8·109-s + 12·116-s − 33·121-s − 24·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.603·11-s − 3/4·16-s + 0.917·19-s − 2.22·29-s + 4.31·31-s − 0.937·41-s + 0.301·44-s + 49-s + 6.24·59-s − 0.256·61-s + 3/8·64-s − 5.93·71-s − 0.458·76-s + 0.675·79-s + 1.90·89-s − 0.796·101-s + 0.766·109-s + 1.11·116-s − 3·121-s − 2.15·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(297585.\)
Root analytic conductor: \(4.83282\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.933531491\)
\(L(\frac12)\) \(\approx\) \(2.933531491\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$D_4\times C_2$ \( 1 + T^{2} + p^{2} T^{4} + p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 - p T^{2} + 4 T^{4} - p^{3} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 + T + 18 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 59 T^{2} + 1444 T^{4} - 59 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 2 T + 22 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 43 T^{2} + 1176 T^{4} - 43 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 6 T + 50 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
37$D_4\times C_2$ \( 1 - 31 T^{2} - 120 T^{4} - 31 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 3 T + 80 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 136 T^{2} + 8254 T^{4} - 136 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 56 T^{2} + 1870 T^{4} - 56 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 131 T^{2} + 9564 T^{4} - 131 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
61$D_{4}$ \( ( 1 + T + 84 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 + 40 T^{2} + 8766 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 25 T + 294 T^{2} + 25 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
79$D_{4}$ \( ( 1 - 3 T + 122 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 9 T + 160 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 41 T^{2} + 14032 T^{4} + 41 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.17988375769006573427520085754, −6.12220981314655322919974494371, −5.65573338457280430693164559778, −5.60892899511881910138640671440, −5.36596813733498077332332353319, −5.22461222976793835592459626428, −4.97694620584823684530548837001, −4.78567175008528779806765043037, −4.50654452200743031080614622294, −4.45512191017635664628716205205, −4.04682261442079229288179408400, −3.94231530562204292640503423490, −3.78457671389930592371427477438, −3.49810365402455767126463321208, −3.20351525081762458458378604199, −2.94216275208139638414627137435, −2.54536740362847667437367266721, −2.53978746253719150370639023153, −2.43892221276140374346724149099, −2.03028108210700110682424187199, −1.57610397372551341443888165442, −1.23399351578131453712194918400, −1.15221598377197832761047421865, −0.48471499608281296058666312327, −0.41871181266895638371257279446, 0.41871181266895638371257279446, 0.48471499608281296058666312327, 1.15221598377197832761047421865, 1.23399351578131453712194918400, 1.57610397372551341443888165442, 2.03028108210700110682424187199, 2.43892221276140374346724149099, 2.53978746253719150370639023153, 2.54536740362847667437367266721, 2.94216275208139638414627137435, 3.20351525081762458458378604199, 3.49810365402455767126463321208, 3.78457671389930592371427477438, 3.94231530562204292640503423490, 4.04682261442079229288179408400, 4.45512191017635664628716205205, 4.50654452200743031080614622294, 4.78567175008528779806765043037, 4.97694620584823684530548837001, 5.22461222976793835592459626428, 5.36596813733498077332332353319, 5.60892899511881910138640671440, 5.65573338457280430693164559778, 6.12220981314655322919974494371, 6.17988375769006573427520085754

Graph of the $Z$-function along the critical line