Properties

Label 2-29-29.7-c5-0-10
Degree $2$
Conductor $29$
Sign $-0.0639 - 0.997i$
Analytic cond. $4.65113$
Root an. cond. $2.15664$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.73 − 7.58i)2-s + (−20.8 − 10.0i)3-s + (−25.6 + 12.3i)4-s + (−4.14 − 18.1i)5-s + (−40.0 + 175. i)6-s + (89.9 + 43.3i)7-s + (−16.9 − 21.2i)8-s + (182. + 228. i)9-s + (−130. + 62.8i)10-s + (−167. + 209. i)11-s + 659.·12-s + (122. − 153. i)13-s + (172. − 756. i)14-s + (−95.8 + 420. i)15-s + (−700. + 878. i)16-s − 2.30e3·17-s + ⋯
L(s)  = 1  + (−0.305 − 1.34i)2-s + (−1.33 − 0.644i)3-s + (−0.802 + 0.386i)4-s + (−0.0740 − 0.324i)5-s + (−0.454 + 1.99i)6-s + (0.693 + 0.334i)7-s + (−0.0934 − 0.117i)8-s + (0.751 + 0.941i)9-s + (−0.412 + 0.198i)10-s + (−0.416 + 0.522i)11-s + 1.32·12-s + (0.200 − 0.251i)13-s + (0.235 − 1.03i)14-s + (−0.110 + 0.481i)15-s + (−0.684 + 0.857i)16-s − 1.93·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0639 - 0.997i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.0639 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $-0.0639 - 0.997i$
Analytic conductor: \(4.65113\)
Root analytic conductor: \(2.15664\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{29} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :5/2),\ -0.0639 - 0.997i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.212243 + 0.226290i\)
\(L(\frac12)\) \(\approx\) \(0.212243 + 0.226290i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 + (4.33e3 - 1.30e3i)T \)
good2 \( 1 + (1.73 + 7.58i)T + (-28.8 + 13.8i)T^{2} \)
3 \( 1 + (20.8 + 10.0i)T + (151. + 189. i)T^{2} \)
5 \( 1 + (4.14 + 18.1i)T + (-2.81e3 + 1.35e3i)T^{2} \)
7 \( 1 + (-89.9 - 43.3i)T + (1.04e4 + 1.31e4i)T^{2} \)
11 \( 1 + (167. - 209. i)T + (-3.58e4 - 1.57e5i)T^{2} \)
13 \( 1 + (-122. + 153. i)T + (-8.26e4 - 3.61e5i)T^{2} \)
17 \( 1 + 2.30e3T + 1.41e6T^{2} \)
19 \( 1 + (313. - 151. i)T + (1.54e6 - 1.93e6i)T^{2} \)
23 \( 1 + (-680. + 2.98e3i)T + (-5.79e6 - 2.79e6i)T^{2} \)
31 \( 1 + (-51.7 - 226. i)T + (-2.57e7 + 1.24e7i)T^{2} \)
37 \( 1 + (2.97e3 + 3.73e3i)T + (-1.54e7 + 6.76e7i)T^{2} \)
41 \( 1 + 1.20e4T + 1.15e8T^{2} \)
43 \( 1 + (3.25e3 - 1.42e4i)T + (-1.32e8 - 6.37e7i)T^{2} \)
47 \( 1 + (-1.85e4 + 2.32e4i)T + (-5.10e7 - 2.23e8i)T^{2} \)
53 \( 1 + (3.11e3 + 1.36e4i)T + (-3.76e8 + 1.81e8i)T^{2} \)
59 \( 1 - 7.83e3T + 7.14e8T^{2} \)
61 \( 1 + (4.89e4 + 2.35e4i)T + (5.26e8 + 6.60e8i)T^{2} \)
67 \( 1 + (1.71e4 + 2.14e4i)T + (-3.00e8 + 1.31e9i)T^{2} \)
71 \( 1 + (-1.94e4 + 2.43e4i)T + (-4.01e8 - 1.75e9i)T^{2} \)
73 \( 1 + (-685. + 3.00e3i)T + (-1.86e9 - 8.99e8i)T^{2} \)
79 \( 1 + (-3.01e4 - 3.78e4i)T + (-6.84e8 + 2.99e9i)T^{2} \)
83 \( 1 + (7.36e4 - 3.54e4i)T + (2.45e9 - 3.07e9i)T^{2} \)
89 \( 1 + (-1.41e4 - 6.20e4i)T + (-5.03e9 + 2.42e9i)T^{2} \)
97 \( 1 + (-1.08e5 + 5.21e4i)T + (5.35e9 - 6.71e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.31223663553669425063267166845, −13.08454625061918386708911146880, −12.35504487715773877013726095919, −11.29860783831587703460123923668, −10.59527886830858288293092216240, −8.738122874145017823954359018698, −6.64454399282995421170856323319, −4.81649756884279680391197490053, −1.94808318803502884596454907662, −0.24878883674979592251037275891, 4.73258878172335606350106689933, 5.97847360903638319404637096147, 7.23710895827383287715814239022, 8.902446856422777082456022479803, 10.79321414397937127164499234404, 11.48471051520253423727577141616, 13.63698212536567879581142241726, 15.18866978958342960711903255556, 15.83150206182567656367707310934, 17.02437890839863169921310361942

Graph of the $Z$-function along the critical line