Properties

Label 2-29-29.16-c5-0-9
Degree $2$
Conductor $29$
Sign $-0.673 + 0.739i$
Analytic cond. $4.65113$
Root an. cond. $2.15664$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.07 − 1.48i)2-s + (18.8 − 23.6i)3-s + (−12.6 − 15.8i)4-s + (15.8 + 7.61i)5-s + (−93.1 + 44.8i)6-s + (−39.8 + 49.9i)7-s + (39.7 + 174. i)8-s + (−149. − 656. i)9-s + (−37.3 − 46.8i)10-s + (−25.0 + 109. i)11-s − 615.·12-s + (148. − 650. i)13-s + (196. − 94.6i)14-s + (478. − 230. i)15-s + (−8.84 + 38.7i)16-s − 137.·17-s + ⋯
L(s)  = 1  + (−0.544 − 0.262i)2-s + (1.21 − 1.51i)3-s + (−0.396 − 0.496i)4-s + (0.282 + 0.136i)5-s + (−1.05 + 0.508i)6-s + (−0.307 + 0.385i)7-s + (0.219 + 0.962i)8-s + (−0.616 − 2.70i)9-s + (−0.118 − 0.148i)10-s + (−0.0625 + 0.273i)11-s − 1.23·12-s + (0.243 − 1.06i)13-s + (0.268 − 0.129i)14-s + (0.549 − 0.264i)15-s + (−0.00864 + 0.0378i)16-s − 0.115·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.673 + 0.739i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.673 + 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $-0.673 + 0.739i$
Analytic conductor: \(4.65113\)
Root analytic conductor: \(2.15664\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{29} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :5/2),\ -0.673 + 0.739i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.585030 - 1.32448i\)
\(L(\frac12)\) \(\approx\) \(0.585030 - 1.32448i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 + (-4.34e3 + 1.28e3i)T \)
good2 \( 1 + (3.07 + 1.48i)T + (19.9 + 25.0i)T^{2} \)
3 \( 1 + (-18.8 + 23.6i)T + (-54.0 - 236. i)T^{2} \)
5 \( 1 + (-15.8 - 7.61i)T + (1.94e3 + 2.44e3i)T^{2} \)
7 \( 1 + (39.8 - 49.9i)T + (-3.73e3 - 1.63e4i)T^{2} \)
11 \( 1 + (25.0 - 109. i)T + (-1.45e5 - 6.98e4i)T^{2} \)
13 \( 1 + (-148. + 650. i)T + (-3.34e5 - 1.61e5i)T^{2} \)
17 \( 1 + 137.T + 1.41e6T^{2} \)
19 \( 1 + (-1.46e3 - 1.84e3i)T + (-5.50e5 + 2.41e6i)T^{2} \)
23 \( 1 + (-2.89e3 + 1.39e3i)T + (4.01e6 - 5.03e6i)T^{2} \)
31 \( 1 + (-76.5 - 36.8i)T + (1.78e7 + 2.23e7i)T^{2} \)
37 \( 1 + (-2.81e3 - 1.23e4i)T + (-6.24e7 + 3.00e7i)T^{2} \)
41 \( 1 - 6.14e3T + 1.15e8T^{2} \)
43 \( 1 + (-6.40e3 + 3.08e3i)T + (9.16e7 - 1.14e8i)T^{2} \)
47 \( 1 + (-3.65e3 + 1.60e4i)T + (-2.06e8 - 9.95e7i)T^{2} \)
53 \( 1 + (7.97e3 + 3.84e3i)T + (2.60e8 + 3.26e8i)T^{2} \)
59 \( 1 + 2.96e4T + 7.14e8T^{2} \)
61 \( 1 + (3.13e4 - 3.93e4i)T + (-1.87e8 - 8.23e8i)T^{2} \)
67 \( 1 + (-8.06e3 - 3.53e4i)T + (-1.21e9 + 5.85e8i)T^{2} \)
71 \( 1 + (1.76e3 - 7.73e3i)T + (-1.62e9 - 7.82e8i)T^{2} \)
73 \( 1 + (4.37e4 - 2.10e4i)T + (1.29e9 - 1.62e9i)T^{2} \)
79 \( 1 + (7.77e3 + 3.40e4i)T + (-2.77e9 + 1.33e9i)T^{2} \)
83 \( 1 + (-4.42e4 - 5.54e4i)T + (-8.76e8 + 3.84e9i)T^{2} \)
89 \( 1 + (-6.48e4 - 3.12e4i)T + (3.48e9 + 4.36e9i)T^{2} \)
97 \( 1 + (-1.28e4 - 1.61e4i)T + (-1.91e9 + 8.37e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.20120541750708167156132525294, −14.18122772991935554867815894367, −13.28646941075663159220757440184, −12.12735693500632428315086201074, −10.05072606621490370656719644408, −8.821543064412819862002275942472, −7.80031268273132826986343821256, −6.08053547120495296966373808278, −2.72520907309960657911144243960, −1.09574295131732243167158383902, 3.26924425271162849735175333915, 4.61982269397124780825804873542, 7.55680388639523281150594918673, 9.135644955393102090323031563669, 9.359972493861369464406088333702, 10.92972129613059298899146173764, 13.34716553376748750164983645280, 14.08768686292340910533022305758, 15.64265226134695821959135691956, 16.31810494523229425033209348107

Graph of the $Z$-function along the critical line