Properties

Label 2-29-1.1-c5-0-5
Degree $2$
Conductor $29$
Sign $1$
Analytic cond. $4.65113$
Root an. cond. $2.15664$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.1·2-s − 15.2·3-s + 71.1·4-s + 64.0·5-s − 155.·6-s + 91.1·7-s + 397.·8-s − 9.94·9-s + 650.·10-s − 484.·11-s − 1.08e3·12-s − 1.04e3·13-s + 925.·14-s − 978.·15-s + 1.75e3·16-s − 375.·17-s − 100.·18-s + 2.89e3·19-s + 4.55e3·20-s − 1.39e3·21-s − 4.91e3·22-s + 170.·23-s − 6.06e3·24-s + 979.·25-s − 1.06e4·26-s + 3.86e3·27-s + 6.48e3·28-s + ⋯
L(s)  = 1  + 1.79·2-s − 0.979·3-s + 2.22·4-s + 1.14·5-s − 1.75·6-s + 0.703·7-s + 2.19·8-s − 0.0409·9-s + 2.05·10-s − 1.20·11-s − 2.17·12-s − 1.72·13-s + 1.26·14-s − 1.12·15-s + 1.71·16-s − 0.315·17-s − 0.0734·18-s + 1.84·19-s + 2.54·20-s − 0.688·21-s − 2.16·22-s + 0.0670·23-s − 2.14·24-s + 0.313·25-s − 3.09·26-s + 1.01·27-s + 1.56·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $1$
Analytic conductor: \(4.65113\)
Root analytic conductor: \(2.15664\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.290188599\)
\(L(\frac12)\) \(\approx\) \(3.290188599\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 - 841T \)
good2 \( 1 - 10.1T + 32T^{2} \)
3 \( 1 + 15.2T + 243T^{2} \)
5 \( 1 - 64.0T + 3.12e3T^{2} \)
7 \( 1 - 91.1T + 1.68e4T^{2} \)
11 \( 1 + 484.T + 1.61e5T^{2} \)
13 \( 1 + 1.04e3T + 3.71e5T^{2} \)
17 \( 1 + 375.T + 1.41e6T^{2} \)
19 \( 1 - 2.89e3T + 2.47e6T^{2} \)
23 \( 1 - 170.T + 6.43e6T^{2} \)
31 \( 1 + 3.05e3T + 2.86e7T^{2} \)
37 \( 1 + 8.30e3T + 6.93e7T^{2} \)
41 \( 1 + 5.22e3T + 1.15e8T^{2} \)
43 \( 1 + 585.T + 1.47e8T^{2} \)
47 \( 1 - 2.91e4T + 2.29e8T^{2} \)
53 \( 1 - 1.74e4T + 4.18e8T^{2} \)
59 \( 1 - 2.25e4T + 7.14e8T^{2} \)
61 \( 1 - 5.55e4T + 8.44e8T^{2} \)
67 \( 1 - 7.99e3T + 1.35e9T^{2} \)
71 \( 1 + 2.03e4T + 1.80e9T^{2} \)
73 \( 1 - 5.25e4T + 2.07e9T^{2} \)
79 \( 1 - 2.18e4T + 3.07e9T^{2} \)
83 \( 1 + 1.03e5T + 3.93e9T^{2} \)
89 \( 1 + 5.88e4T + 5.58e9T^{2} \)
97 \( 1 - 6.52e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.82848932651913362116602315980, −14.49025524038437041304063241306, −13.65222944109773222551918707751, −12.42668415061763673571416007975, −11.46532739610619695400200956940, −10.18500835456490329153482939526, −7.17321896279227698373503696451, −5.43648295009015859701682376586, −5.17053504824405639413665915313, −2.45515087959081429292495258402, 2.45515087959081429292495258402, 5.17053504824405639413665915313, 5.43648295009015859701682376586, 7.17321896279227698373503696451, 10.18500835456490329153482939526, 11.46532739610619695400200956940, 12.42668415061763673571416007975, 13.65222944109773222551918707751, 14.49025524038437041304063241306, 15.82848932651913362116602315980

Graph of the $Z$-function along the critical line