Properties

Label 2-29-1.1-c5-0-0
Degree $2$
Conductor $29$
Sign $1$
Analytic cond. $4.65113$
Root an. cond. $2.15664$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.83·2-s − 24.5·3-s + 14.7·4-s − 54.3·5-s + 167.·6-s − 37.6·7-s + 117.·8-s + 360.·9-s + 371.·10-s − 146.·11-s − 362.·12-s + 162.·13-s + 257.·14-s + 1.33e3·15-s − 1.27e3·16-s − 2.16e3·17-s − 2.46e3·18-s + 2.49e3·19-s − 801.·20-s + 925.·21-s + 1.00e3·22-s − 122.·23-s − 2.89e3·24-s − 175.·25-s − 1.11e3·26-s − 2.88e3·27-s − 556.·28-s + ⋯
L(s)  = 1  − 1.20·2-s − 1.57·3-s + 0.461·4-s − 0.971·5-s + 1.90·6-s − 0.290·7-s + 0.651·8-s + 1.48·9-s + 1.17·10-s − 0.366·11-s − 0.727·12-s + 0.266·13-s + 0.351·14-s + 1.53·15-s − 1.24·16-s − 1.81·17-s − 1.79·18-s + 1.58·19-s − 0.448·20-s + 0.457·21-s + 0.442·22-s − 0.0483·23-s − 1.02·24-s − 0.0562·25-s − 0.322·26-s − 0.761·27-s − 0.134·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $1$
Analytic conductor: \(4.65113\)
Root analytic conductor: \(2.15664\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.2446683834\)
\(L(\frac12)\) \(\approx\) \(0.2446683834\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 - 841T \)
good2 \( 1 + 6.83T + 32T^{2} \)
3 \( 1 + 24.5T + 243T^{2} \)
5 \( 1 + 54.3T + 3.12e3T^{2} \)
7 \( 1 + 37.6T + 1.68e4T^{2} \)
11 \( 1 + 146.T + 1.61e5T^{2} \)
13 \( 1 - 162.T + 3.71e5T^{2} \)
17 \( 1 + 2.16e3T + 1.41e6T^{2} \)
19 \( 1 - 2.49e3T + 2.47e6T^{2} \)
23 \( 1 + 122.T + 6.43e6T^{2} \)
31 \( 1 - 8.67e3T + 2.86e7T^{2} \)
37 \( 1 - 1.17e4T + 6.93e7T^{2} \)
41 \( 1 - 9.51e3T + 1.15e8T^{2} \)
43 \( 1 + 1.48e4T + 1.47e8T^{2} \)
47 \( 1 + 3.82e3T + 2.29e8T^{2} \)
53 \( 1 + 3.32e4T + 4.18e8T^{2} \)
59 \( 1 - 1.96e4T + 7.14e8T^{2} \)
61 \( 1 - 2.40e4T + 8.44e8T^{2} \)
67 \( 1 - 5.51e4T + 1.35e9T^{2} \)
71 \( 1 + 4.16e4T + 1.80e9T^{2} \)
73 \( 1 + 1.57e4T + 2.07e9T^{2} \)
79 \( 1 - 5.67e4T + 3.07e9T^{2} \)
83 \( 1 - 1.07e5T + 3.93e9T^{2} \)
89 \( 1 - 3.76e4T + 5.58e9T^{2} \)
97 \( 1 + 4.39e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.18753829456703183570821871626, −15.77934671429104660339014950027, −13.27017360244648197793714844445, −11.69122026557819540638580946656, −11.02245534148911932220576541323, −9.708132633585089077242493818204, −8.006758632975077432369791712368, −6.62522364837222268506810619597, −4.66242522013045526807422299379, −0.60058886752604815275427474811, 0.60058886752604815275427474811, 4.66242522013045526807422299379, 6.62522364837222268506810619597, 8.006758632975077432369791712368, 9.708132633585089077242493818204, 11.02245534148911932220576541323, 11.69122026557819540638580946656, 13.27017360244648197793714844445, 15.77934671429104660339014950027, 16.18753829456703183570821871626

Graph of the $Z$-function along the critical line