Properties

Label 2-29-29.14-c2-0-3
Degree $2$
Conductor $29$
Sign $-0.435 + 0.900i$
Analytic cond. $0.790192$
Root an. cond. $0.888927$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.388 − 3.45i)2-s + (−0.327 − 0.521i)3-s + (−7.86 + 1.79i)4-s + (4.44 + 3.54i)5-s + (−1.67 + 1.33i)6-s + (1.25 − 5.49i)7-s + (4.66 + 13.3i)8-s + (3.74 − 7.76i)9-s + (10.5 − 16.7i)10-s + (−6.29 + 17.9i)11-s + (3.51 + 3.51i)12-s + (6.68 + 13.8i)13-s + (−19.4 − 2.19i)14-s + (0.392 − 3.48i)15-s + (15.1 − 7.28i)16-s + (1.08 − 1.08i)17-s + ⋯
L(s)  = 1  + (−0.194 − 1.72i)2-s + (−0.109 − 0.173i)3-s + (−1.96 + 0.448i)4-s + (0.889 + 0.709i)5-s + (−0.279 + 0.222i)6-s + (0.179 − 0.784i)7-s + (0.583 + 1.66i)8-s + (0.415 − 0.862i)9-s + (1.05 − 1.67i)10-s + (−0.572 + 1.63i)11-s + (0.292 + 0.292i)12-s + (0.514 + 1.06i)13-s + (−1.38 − 0.156i)14-s + (0.0261 − 0.232i)15-s + (0.946 − 0.455i)16-s + (0.0636 − 0.0636i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.435 + 0.900i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.435 + 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $-0.435 + 0.900i$
Analytic conductor: \(0.790192\)
Root analytic conductor: \(0.888927\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{29} (14, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :1),\ -0.435 + 0.900i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.471774 - 0.752501i\)
\(L(\frac12)\) \(\approx\) \(0.471774 - 0.752501i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 + (18.9 - 21.9i)T \)
good2 \( 1 + (0.388 + 3.45i)T + (-3.89 + 0.890i)T^{2} \)
3 \( 1 + (0.327 + 0.521i)T + (-3.90 + 8.10i)T^{2} \)
5 \( 1 + (-4.44 - 3.54i)T + (5.56 + 24.3i)T^{2} \)
7 \( 1 + (-1.25 + 5.49i)T + (-44.1 - 21.2i)T^{2} \)
11 \( 1 + (6.29 - 17.9i)T + (-94.6 - 75.4i)T^{2} \)
13 \( 1 + (-6.68 - 13.8i)T + (-105. + 132. i)T^{2} \)
17 \( 1 + (-1.08 + 1.08i)T - 289iT^{2} \)
19 \( 1 + (17.6 + 11.1i)T + (156. + 325. i)T^{2} \)
23 \( 1 + (-4.81 - 6.03i)T + (-117. + 515. i)T^{2} \)
31 \( 1 + (5.79 + 51.4i)T + (-936. + 213. i)T^{2} \)
37 \( 1 + (0.580 + 1.65i)T + (-1.07e3 + 853. i)T^{2} \)
41 \( 1 + (-0.198 - 0.198i)T + 1.68e3iT^{2} \)
43 \( 1 + (16.5 + 1.86i)T + (1.80e3 + 411. i)T^{2} \)
47 \( 1 + (2.91 + 1.02i)T + (1.72e3 + 1.37e3i)T^{2} \)
53 \( 1 + (-31.3 + 39.3i)T + (-625. - 2.73e3i)T^{2} \)
59 \( 1 + 1.15T + 3.48e3T^{2} \)
61 \( 1 + (12.3 + 19.7i)T + (-1.61e3 + 3.35e3i)T^{2} \)
67 \( 1 + (-2.18 + 4.54i)T + (-2.79e3 - 3.50e3i)T^{2} \)
71 \( 1 + (-12.0 - 24.9i)T + (-3.14e3 + 3.94e3i)T^{2} \)
73 \( 1 + (8.52 - 75.7i)T + (-5.19e3 - 1.18e3i)T^{2} \)
79 \( 1 + (-27.2 + 9.54i)T + (4.87e3 - 3.89e3i)T^{2} \)
83 \( 1 + (5.13 + 22.4i)T + (-6.20e3 + 2.98e3i)T^{2} \)
89 \( 1 + (-8.12 - 72.1i)T + (-7.72e3 + 1.76e3i)T^{2} \)
97 \( 1 + (-65.8 + 104. i)T + (-4.08e3 - 8.47e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.26496603594466093723778057240, −14.91499086483421469339526971428, −13.55365709182353757379568503529, −12.66080540491829546099210344697, −11.28040615644736813623144456571, −10.19106768090558133909854524346, −9.377455795078679072933931214794, −6.92000484818739799004329756026, −4.18086129816790830092916897276, −2.00214759199398563929312893731, 5.26488221326253593923376502363, 5.93359224129102243340300101397, 8.084459185568106659768830926449, 8.853885241914264640793125193824, 10.53482253411886460630680568965, 13.01547251518227172837943518556, 13.79649434079854710558472684927, 15.24335799678040407720118255835, 16.21822511461988588768414957927, 16.90140961889483361326446842611

Graph of the $Z$-function along the critical line