Properties

Label 2-29-1.1-c17-0-18
Degree $2$
Conductor $29$
Sign $1$
Analytic cond. $53.1344$
Root an. cond. $7.28933$
Motivic weight $17$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 687.·2-s − 1.67e4·3-s + 3.42e5·4-s + 3.76e5·5-s − 1.15e7·6-s − 3.08e5·7-s + 1.45e8·8-s + 1.50e8·9-s + 2.58e8·10-s − 4.41e8·11-s − 5.72e9·12-s + 7.99e8·13-s − 2.12e8·14-s − 6.29e9·15-s + 5.50e10·16-s + 3.92e10·17-s + 1.03e11·18-s − 3.46e10·19-s + 1.28e11·20-s + 5.16e9·21-s − 3.04e11·22-s + 5.56e11·23-s − 2.42e12·24-s − 6.21e11·25-s + 5.49e11·26-s − 3.61e11·27-s − 1.05e11·28-s + ⋯
L(s)  = 1  + 1.90·2-s − 1.47·3-s + 2.61·4-s + 0.430·5-s − 2.79·6-s − 0.0202·7-s + 3.05·8-s + 1.16·9-s + 0.818·10-s − 0.621·11-s − 3.84·12-s + 0.271·13-s − 0.0384·14-s − 0.634·15-s + 3.20·16-s + 1.36·17-s + 2.21·18-s − 0.468·19-s + 1.12·20-s + 0.0297·21-s − 1.18·22-s + 1.48·23-s − 4.50·24-s − 0.814·25-s + 0.516·26-s − 0.246·27-s − 0.0528·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(18-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+17/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $1$
Analytic conductor: \(53.1344\)
Root analytic conductor: \(7.28933\)
Motivic weight: \(17\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :17/2),\ 1)\)

Particular Values

\(L(9)\) \(\approx\) \(5.180994552\)
\(L(\frac12)\) \(\approx\) \(5.180994552\)
\(L(\frac{19}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 - 5.00e11T \)
good2 \( 1 - 687.T + 1.31e5T^{2} \)
3 \( 1 + 1.67e4T + 1.29e8T^{2} \)
5 \( 1 - 3.76e5T + 7.62e11T^{2} \)
7 \( 1 + 3.08e5T + 2.32e14T^{2} \)
11 \( 1 + 4.41e8T + 5.05e17T^{2} \)
13 \( 1 - 7.99e8T + 8.65e18T^{2} \)
17 \( 1 - 3.92e10T + 8.27e20T^{2} \)
19 \( 1 + 3.46e10T + 5.48e21T^{2} \)
23 \( 1 - 5.56e11T + 1.41e23T^{2} \)
31 \( 1 - 3.74e12T + 2.25e25T^{2} \)
37 \( 1 + 3.26e12T + 4.56e26T^{2} \)
41 \( 1 - 9.56e13T + 2.61e27T^{2} \)
43 \( 1 - 8.89e13T + 5.87e27T^{2} \)
47 \( 1 - 2.56e14T + 2.66e28T^{2} \)
53 \( 1 - 2.50e14T + 2.05e29T^{2} \)
59 \( 1 - 1.81e15T + 1.27e30T^{2} \)
61 \( 1 + 2.40e15T + 2.24e30T^{2} \)
67 \( 1 - 9.70e14T + 1.10e31T^{2} \)
71 \( 1 + 1.90e15T + 2.96e31T^{2} \)
73 \( 1 + 1.33e16T + 4.74e31T^{2} \)
79 \( 1 + 7.46e15T + 1.81e32T^{2} \)
83 \( 1 + 1.07e16T + 4.21e32T^{2} \)
89 \( 1 + 4.42e16T + 1.37e33T^{2} \)
97 \( 1 + 4.33e16T + 5.95e33T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07281412439523159356090698840, −12.28130908365082609171405248920, −11.24982818895525411655431785468, −10.35829300469405874089125353319, −7.31023719075133093606078918019, −6.01403445059920282567193788097, −5.48300085007495679280062430594, −4.35011910243013021312621994522, −2.75672619280495870086511367300, −1.09552311392670621594912381226, 1.09552311392670621594912381226, 2.75672619280495870086511367300, 4.35011910243013021312621994522, 5.48300085007495679280062430594, 6.01403445059920282567193788097, 7.31023719075133093606078918019, 10.35829300469405874089125353319, 11.24982818895525411655431785468, 12.28130908365082609171405248920, 13.07281412439523159356090698840

Graph of the $Z$-function along the critical line