Properties

Label 8-2898e4-1.1-c1e4-0-2
Degree $8$
Conductor $7.053\times 10^{13}$
Sign $1$
Analytic cond. $286749.$
Root an. cond. $4.81047$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 10·4-s + 20·8-s + 35·16-s + 12·23-s − 20·25-s − 24·29-s + 56·32-s + 48·46-s + 14·49-s − 80·50-s − 96·58-s + 84·64-s − 24·71-s + 120·92-s + 56·98-s − 200·100-s − 240·116-s + 16·121-s + 127-s + 120·128-s + 131-s + 137-s + 139-s − 96·142-s + 149-s + 151-s + ⋯
L(s)  = 1  + 2.82·2-s + 5·4-s + 7.07·8-s + 35/4·16-s + 2.50·23-s − 4·25-s − 4.45·29-s + 9.89·32-s + 7.07·46-s + 2·49-s − 11.3·50-s − 12.6·58-s + 21/2·64-s − 2.84·71-s + 12.5·92-s + 5.65·98-s − 20·100-s − 22.2·116-s + 1.45·121-s + 0.0887·127-s + 10.6·128-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 8.05·142-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 7^{4} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(286749.\)
Root analytic conductor: \(4.81047\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 7^{4} \cdot 23^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(12.44018529\)
\(L(\frac12)\) \(\approx\) \(12.44018529\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{4} \)
3 \( 1 \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 52 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 92 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 166 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.02645522227697458509440499997, −5.97348792941557624661012345547, −5.67308680719579435786922090653, −5.56721320969627415274843338869, −5.53409663702014928442355979111, −5.27571459017992269306066473669, −4.95229236156132962451658598646, −4.77783714742306794607007775278, −4.42588243373610761497166722523, −4.40035835844814674010577515631, −4.14769619263461526932399963377, −3.85887786935502340177450220201, −3.76566088878819622429457664920, −3.55877467082129725539108911657, −3.35821989808786810804865360461, −3.20254442689168276269298587880, −2.78038594758042144963002457247, −2.69630869581882641332146538740, −2.16470466546053627030660265440, −2.04016253243023552101630114160, −2.03559795432283645106603983425, −1.51764621664569877255707739830, −1.46791156819807032432729859684, −0.849280132399421665771530040334, −0.24390512197382370615077495304, 0.24390512197382370615077495304, 0.849280132399421665771530040334, 1.46791156819807032432729859684, 1.51764621664569877255707739830, 2.03559795432283645106603983425, 2.04016253243023552101630114160, 2.16470466546053627030660265440, 2.69630869581882641332146538740, 2.78038594758042144963002457247, 3.20254442689168276269298587880, 3.35821989808786810804865360461, 3.55877467082129725539108911657, 3.76566088878819622429457664920, 3.85887786935502340177450220201, 4.14769619263461526932399963377, 4.40035835844814674010577515631, 4.42588243373610761497166722523, 4.77783714742306794607007775278, 4.95229236156132962451658598646, 5.27571459017992269306066473669, 5.53409663702014928442355979111, 5.56721320969627415274843338869, 5.67308680719579435786922090653, 5.97348792941557624661012345547, 6.02645522227697458509440499997

Graph of the $Z$-function along the critical line