Properties

Label 24-17e24-1.1-c9e12-0-1
Degree $24$
Conductor $3.394\times 10^{29}$
Sign $1$
Analytic cond. $1.18256\times 10^{26}$
Root an. cond. $12.2002$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $12$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 30·2-s − 1.68e3·4-s + 5.68e4·8-s − 1.13e5·9-s − 6.32e4·13-s + 1.20e6·16-s + 3.40e6·18-s − 1.11e6·19-s − 9.49e6·25-s + 1.89e6·26-s − 4.46e7·32-s + 1.91e8·36-s + 3.33e7·38-s − 1.00e7·43-s − 1.12e8·47-s − 3.02e8·49-s + 2.84e8·50-s + 1.06e8·52-s − 7.68e7·53-s − 1.16e7·59-s − 5.69e8·64-s − 3.04e8·67-s − 6.44e9·72-s + 1.87e9·76-s + 6.30e9·81-s + 8.45e8·83-s + 3.00e8·86-s + ⋯
L(s)  = 1  − 1.32·2-s − 3.29·4-s + 4.90·8-s − 5.76·9-s − 0.613·13-s + 4.59·16-s + 7.64·18-s − 1.95·19-s − 4.86·25-s + 0.813·26-s − 7.53·32-s + 18.9·36-s + 2.59·38-s − 0.446·43-s − 3.36·47-s − 7.50·49-s + 6.44·50-s + 2.01·52-s − 1.33·53-s − 0.124·59-s − 4.24·64-s − 1.84·67-s − 28.2·72-s + 6.43·76-s + 16.2·81-s + 1.95·83-s + 0.591·86-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(17^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(17^{24}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(17^{24}\)
Sign: $1$
Analytic conductor: \(1.18256\times 10^{26}\)
Root analytic conductor: \(12.2002\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(12\)
Selberg data: \((24,\ 17^{24} ,\ ( \ : [9/2]^{12} ),\ 1 )\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( ( 1 + 15 T + 295 p^{2} T^{2} + 4485 p^{2} T^{3} + 6465 p^{7} T^{4} + 173295 p^{6} T^{5} + 420695 p^{10} T^{6} + 173295 p^{15} T^{7} + 6465 p^{25} T^{8} + 4485 p^{29} T^{9} + 295 p^{38} T^{10} + 15 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
3 \( 1 + 113506 T^{2} + 6577832134 T^{4} + 29193971325722 p^{2} T^{6} + 33713449019652917 p^{5} T^{8} + \)\(28\!\cdots\!44\)\( p^{6} T^{10} + \)\(68\!\cdots\!48\)\( p^{8} T^{12} + \)\(28\!\cdots\!44\)\( p^{24} T^{14} + 33713449019652917 p^{41} T^{16} + 29193971325722 p^{56} T^{18} + 6577832134 p^{72} T^{20} + 113506 p^{90} T^{22} + p^{108} T^{24} \)
5 \( 1 + 9497852 T^{2} + 47365479336818 T^{4} + \)\(16\!\cdots\!04\)\( T^{6} + \)\(19\!\cdots\!19\)\( p^{2} T^{8} + \)\(18\!\cdots\!48\)\( p^{4} T^{10} + \)\(15\!\cdots\!48\)\( p^{6} T^{12} + \)\(18\!\cdots\!48\)\( p^{22} T^{14} + \)\(19\!\cdots\!19\)\( p^{38} T^{16} + \)\(16\!\cdots\!04\)\( p^{54} T^{18} + 47365479336818 p^{72} T^{20} + 9497852 p^{90} T^{22} + p^{108} T^{24} \)
7 \( 1 + 302799002 T^{2} + 42807908296925318 T^{4} + \)\(77\!\cdots\!38\)\( p^{2} T^{6} + \)\(98\!\cdots\!07\)\( p^{4} T^{8} + \)\(10\!\cdots\!08\)\( p^{6} T^{10} + \)\(87\!\cdots\!28\)\( p^{8} T^{12} + \)\(10\!\cdots\!08\)\( p^{24} T^{14} + \)\(98\!\cdots\!07\)\( p^{40} T^{16} + \)\(77\!\cdots\!38\)\( p^{56} T^{18} + 42807908296925318 p^{72} T^{20} + 302799002 p^{90} T^{22} + p^{108} T^{24} \)
11 \( 1 + 13289501314 T^{2} + 92562603798001078150 T^{4} + \)\(44\!\cdots\!14\)\( T^{6} + \)\(16\!\cdots\!83\)\( T^{8} + \)\(48\!\cdots\!24\)\( T^{10} + \)\(12\!\cdots\!56\)\( T^{12} + \)\(48\!\cdots\!24\)\( p^{18} T^{14} + \)\(16\!\cdots\!83\)\( p^{36} T^{16} + \)\(44\!\cdots\!14\)\( p^{54} T^{18} + 92562603798001078150 p^{72} T^{20} + 13289501314 p^{90} T^{22} + p^{108} T^{24} \)
13 \( ( 1 + 31602 T + 13817009022 T^{2} - 545719956806110 T^{3} + 12389506182556015059 p T^{4} - \)\(35\!\cdots\!08\)\( T^{5} + \)\(26\!\cdots\!40\)\( T^{6} - \)\(35\!\cdots\!08\)\( p^{9} T^{7} + 12389506182556015059 p^{19} T^{8} - 545719956806110 p^{27} T^{9} + 13817009022 p^{36} T^{10} + 31602 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
19 \( ( 1 + 555336 T + 1258649398242 T^{2} + 405809089662899128 T^{3} + \)\(68\!\cdots\!23\)\( T^{4} + \)\(15\!\cdots\!32\)\( T^{5} + \)\(25\!\cdots\!68\)\( T^{6} + \)\(15\!\cdots\!32\)\( p^{9} T^{7} + \)\(68\!\cdots\!23\)\( p^{18} T^{8} + 405809089662899128 p^{27} T^{9} + 1258649398242 p^{36} T^{10} + 555336 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
23 \( 1 + 12996789975562 T^{2} + \)\(86\!\cdots\!78\)\( T^{4} + \)\(38\!\cdots\!30\)\( T^{6} + \)\(12\!\cdots\!07\)\( T^{8} + \)\(31\!\cdots\!08\)\( T^{10} + \)\(63\!\cdots\!48\)\( T^{12} + \)\(31\!\cdots\!08\)\( p^{18} T^{14} + \)\(12\!\cdots\!07\)\( p^{36} T^{16} + \)\(38\!\cdots\!30\)\( p^{54} T^{18} + \)\(86\!\cdots\!78\)\( p^{72} T^{20} + 12996789975562 p^{90} T^{22} + p^{108} T^{24} \)
29 \( 1 + 97122698652572 T^{2} + \)\(45\!\cdots\!98\)\( T^{4} + \)\(14\!\cdots\!96\)\( T^{6} + \)\(33\!\cdots\!95\)\( T^{8} + \)\(61\!\cdots\!80\)\( T^{10} + \)\(97\!\cdots\!08\)\( T^{12} + \)\(61\!\cdots\!80\)\( p^{18} T^{14} + \)\(33\!\cdots\!95\)\( p^{36} T^{16} + \)\(14\!\cdots\!96\)\( p^{54} T^{18} + \)\(45\!\cdots\!98\)\( p^{72} T^{20} + 97122698652572 p^{90} T^{22} + p^{108} T^{24} \)
31 \( 1 + 2881782266438 p T^{2} + \)\(53\!\cdots\!98\)\( T^{4} + \)\(23\!\cdots\!22\)\( T^{6} + \)\(87\!\cdots\!83\)\( T^{8} + \)\(28\!\cdots\!20\)\( T^{10} + \)\(81\!\cdots\!56\)\( T^{12} + \)\(28\!\cdots\!20\)\( p^{18} T^{14} + \)\(87\!\cdots\!83\)\( p^{36} T^{16} + \)\(23\!\cdots\!22\)\( p^{54} T^{18} + \)\(53\!\cdots\!98\)\( p^{72} T^{20} + 2881782266438 p^{91} T^{22} + p^{108} T^{24} \)
37 \( 1 + 742931162642684 T^{2} + \)\(29\!\cdots\!42\)\( T^{4} + \)\(21\!\cdots\!52\)\( p T^{6} + \)\(16\!\cdots\!83\)\( T^{8} + \)\(28\!\cdots\!16\)\( T^{10} + \)\(41\!\cdots\!88\)\( T^{12} + \)\(28\!\cdots\!16\)\( p^{18} T^{14} + \)\(16\!\cdots\!83\)\( p^{36} T^{16} + \)\(21\!\cdots\!52\)\( p^{55} T^{18} + \)\(29\!\cdots\!42\)\( p^{72} T^{20} + 742931162642684 p^{90} T^{22} + p^{108} T^{24} \)
41 \( 1 + 1002700530748300 T^{2} + \)\(90\!\cdots\!86\)\( T^{4} + \)\(52\!\cdots\!72\)\( T^{6} + \)\(27\!\cdots\!23\)\( T^{8} + \)\(10\!\cdots\!88\)\( T^{10} + \)\(39\!\cdots\!60\)\( T^{12} + \)\(10\!\cdots\!88\)\( p^{18} T^{14} + \)\(27\!\cdots\!23\)\( p^{36} T^{16} + \)\(52\!\cdots\!72\)\( p^{54} T^{18} + \)\(90\!\cdots\!86\)\( p^{72} T^{20} + 1002700530748300 p^{90} T^{22} + p^{108} T^{24} \)
43 \( ( 1 + 5002308 T + 1956347875317762 T^{2} + \)\(35\!\cdots\!08\)\( T^{3} + \)\(19\!\cdots\!79\)\( T^{4} + \)\(24\!\cdots\!76\)\( T^{5} + \)\(12\!\cdots\!56\)\( T^{6} + \)\(24\!\cdots\!76\)\( p^{9} T^{7} + \)\(19\!\cdots\!79\)\( p^{18} T^{8} + \)\(35\!\cdots\!08\)\( p^{27} T^{9} + 1956347875317762 p^{36} T^{10} + 5002308 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
47 \( ( 1 + 56276220 T + 5255273429042842 T^{2} + \)\(20\!\cdots\!40\)\( T^{3} + \)\(12\!\cdots\!95\)\( T^{4} + \)\(37\!\cdots\!40\)\( T^{5} + \)\(17\!\cdots\!16\)\( T^{6} + \)\(37\!\cdots\!40\)\( p^{9} T^{7} + \)\(12\!\cdots\!95\)\( p^{18} T^{8} + \)\(20\!\cdots\!40\)\( p^{27} T^{9} + 5255273429042842 p^{36} T^{10} + 56276220 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
53 \( ( 1 + 38402136 T + 7484504567174706 T^{2} + \)\(31\!\cdots\!40\)\( T^{3} + \)\(19\!\cdots\!91\)\( T^{4} + \)\(15\!\cdots\!92\)\( T^{5} + \)\(35\!\cdots\!40\)\( T^{6} + \)\(15\!\cdots\!92\)\( p^{9} T^{7} + \)\(19\!\cdots\!91\)\( p^{18} T^{8} + \)\(31\!\cdots\!40\)\( p^{27} T^{9} + 7484504567174706 p^{36} T^{10} + 38402136 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
59 \( ( 1 + 5809452 T + 38021175146461314 T^{2} - \)\(67\!\cdots\!76\)\( T^{3} + \)\(62\!\cdots\!39\)\( T^{4} - \)\(19\!\cdots\!68\)\( T^{5} + \)\(64\!\cdots\!72\)\( T^{6} - \)\(19\!\cdots\!68\)\( p^{9} T^{7} + \)\(62\!\cdots\!39\)\( p^{18} T^{8} - \)\(67\!\cdots\!76\)\( p^{27} T^{9} + 38021175146461314 p^{36} T^{10} + 5809452 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
61 \( 1 + 48466152062141468 T^{2} + \)\(12\!\cdots\!54\)\( T^{4} + \)\(25\!\cdots\!64\)\( T^{6} + \)\(44\!\cdots\!43\)\( T^{8} + \)\(63\!\cdots\!48\)\( T^{10} + \)\(79\!\cdots\!24\)\( T^{12} + \)\(63\!\cdots\!48\)\( p^{18} T^{14} + \)\(44\!\cdots\!43\)\( p^{36} T^{16} + \)\(25\!\cdots\!64\)\( p^{54} T^{18} + \)\(12\!\cdots\!54\)\( p^{72} T^{20} + 48466152062141468 p^{90} T^{22} + p^{108} T^{24} \)
67 \( ( 1 + 152104376 T + 1650794339534422 p T^{2} + \)\(15\!\cdots\!76\)\( T^{3} + \)\(61\!\cdots\!71\)\( T^{4} + \)\(75\!\cdots\!44\)\( T^{5} + \)\(20\!\cdots\!48\)\( T^{6} + \)\(75\!\cdots\!44\)\( p^{9} T^{7} + \)\(61\!\cdots\!71\)\( p^{18} T^{8} + \)\(15\!\cdots\!76\)\( p^{27} T^{9} + 1650794339534422 p^{37} T^{10} + 152104376 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
71 \( 1 + 27913804299083546 T^{2} + \)\(55\!\cdots\!98\)\( T^{4} + \)\(28\!\cdots\!90\)\( T^{6} + \)\(18\!\cdots\!71\)\( T^{8} + \)\(10\!\cdots\!96\)\( T^{10} + \)\(45\!\cdots\!84\)\( T^{12} + \)\(10\!\cdots\!96\)\( p^{18} T^{14} + \)\(18\!\cdots\!71\)\( p^{36} T^{16} + \)\(28\!\cdots\!90\)\( p^{54} T^{18} + \)\(55\!\cdots\!98\)\( p^{72} T^{20} + 27913804299083546 p^{90} T^{22} + p^{108} T^{24} \)
73 \( 1 + 368307484446083052 T^{2} + \)\(65\!\cdots\!42\)\( T^{4} + \)\(75\!\cdots\!56\)\( T^{6} + \)\(63\!\cdots\!67\)\( T^{8} + \)\(43\!\cdots\!20\)\( T^{10} + \)\(26\!\cdots\!00\)\( T^{12} + \)\(43\!\cdots\!20\)\( p^{18} T^{14} + \)\(63\!\cdots\!67\)\( p^{36} T^{16} + \)\(75\!\cdots\!56\)\( p^{54} T^{18} + \)\(65\!\cdots\!42\)\( p^{72} T^{20} + 368307484446083052 p^{90} T^{22} + p^{108} T^{24} \)
79 \( 1 + 809460015415450586 T^{2} + \)\(32\!\cdots\!78\)\( T^{4} + \)\(85\!\cdots\!94\)\( T^{6} + \)\(16\!\cdots\!11\)\( T^{8} + \)\(26\!\cdots\!68\)\( T^{10} + \)\(34\!\cdots\!16\)\( T^{12} + \)\(26\!\cdots\!68\)\( p^{18} T^{14} + \)\(16\!\cdots\!11\)\( p^{36} T^{16} + \)\(85\!\cdots\!94\)\( p^{54} T^{18} + \)\(32\!\cdots\!78\)\( p^{72} T^{20} + 809460015415450586 p^{90} T^{22} + p^{108} T^{24} \)
83 \( ( 1 - 422521068 T + 764720720153870610 T^{2} - \)\(27\!\cdots\!52\)\( T^{3} + \)\(27\!\cdots\!07\)\( T^{4} - \)\(81\!\cdots\!80\)\( T^{5} + \)\(63\!\cdots\!92\)\( T^{6} - \)\(81\!\cdots\!80\)\( p^{9} T^{7} + \)\(27\!\cdots\!07\)\( p^{18} T^{8} - \)\(27\!\cdots\!52\)\( p^{27} T^{9} + 764720720153870610 p^{36} T^{10} - 422521068 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
89 \( ( 1 + 469111902 T + 1142420830732320310 T^{2} + \)\(15\!\cdots\!66\)\( T^{3} + \)\(49\!\cdots\!23\)\( T^{4} - \)\(70\!\cdots\!52\)\( T^{5} + \)\(15\!\cdots\!32\)\( T^{6} - \)\(70\!\cdots\!52\)\( p^{9} T^{7} + \)\(49\!\cdots\!23\)\( p^{18} T^{8} + \)\(15\!\cdots\!66\)\( p^{27} T^{9} + 1142420830732320310 p^{36} T^{10} + 469111902 p^{45} T^{11} + p^{54} T^{12} )^{2} \)
97 \( 1 + 3419498066733312812 T^{2} + \)\(80\!\cdots\!54\)\( T^{4} + \)\(12\!\cdots\!12\)\( T^{6} + \)\(16\!\cdots\!91\)\( T^{8} + \)\(16\!\cdots\!40\)\( T^{10} + \)\(14\!\cdots\!88\)\( T^{12} + \)\(16\!\cdots\!40\)\( p^{18} T^{14} + \)\(16\!\cdots\!91\)\( p^{36} T^{16} + \)\(12\!\cdots\!12\)\( p^{54} T^{18} + \)\(80\!\cdots\!54\)\( p^{72} T^{20} + 3419498066733312812 p^{90} T^{22} + p^{108} T^{24} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.08791095009292911533607588541, −3.01560683273875114061249712557, −2.91763373720334874638782898126, −2.84114338781230525812807592857, −2.76712287907422680734914394952, −2.52156494769118348163102276213, −2.50420895169411071435299850722, −2.40006155183437624278025789193, −2.32501724964070354895021983548, −2.25887338794992064346090146814, −2.23646306710197895425660814904, −1.91109474631364613080897544628, −1.88741716967618936420425912688, −1.85418519164252388227740172273, −1.70352822430466263767602255286, −1.51106792076969099752194522012, −1.40308275415494192851396623292, −1.37015951443949435443936759767, −1.20490257731787167477259432215, −1.16035897800641500370030839766, −1.07942329505187014030870751742, −0.922225408420055627186500692631, −0.74618685286781782165175172078, −0.68780216942133540966694134498, −0.51525299187980632165173549955, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.51525299187980632165173549955, 0.68780216942133540966694134498, 0.74618685286781782165175172078, 0.922225408420055627186500692631, 1.07942329505187014030870751742, 1.16035897800641500370030839766, 1.20490257731787167477259432215, 1.37015951443949435443936759767, 1.40308275415494192851396623292, 1.51106792076969099752194522012, 1.70352822430466263767602255286, 1.85418519164252388227740172273, 1.88741716967618936420425912688, 1.91109474631364613080897544628, 2.23646306710197895425660814904, 2.25887338794992064346090146814, 2.32501724964070354895021983548, 2.40006155183437624278025789193, 2.50420895169411071435299850722, 2.52156494769118348163102276213, 2.76712287907422680734914394952, 2.84114338781230525812807592857, 2.91763373720334874638782898126, 3.01560683273875114061249712557, 3.08791095009292911533607588541

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.