Properties

Degree 2
Conductor $ 2^{6} \cdot 3^{2} \cdot 5 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·11-s + 2·13-s − 2·17-s − 4·19-s + 25-s − 2·29-s + 10·37-s − 10·41-s − 4·43-s − 8·47-s − 7·49-s − 10·53-s − 4·55-s − 4·59-s + 2·61-s + 2·65-s − 12·67-s + 8·71-s + 10·73-s + 12·83-s − 2·85-s + 6·89-s − 4·95-s + 2·97-s + 6·101-s − 16·103-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.20·11-s + 0.554·13-s − 0.485·17-s − 0.917·19-s + 1/5·25-s − 0.371·29-s + 1.64·37-s − 1.56·41-s − 0.609·43-s − 1.16·47-s − 49-s − 1.37·53-s − 0.539·55-s − 0.520·59-s + 0.256·61-s + 0.248·65-s − 1.46·67-s + 0.949·71-s + 1.17·73-s + 1.31·83-s − 0.216·85-s + 0.635·89-s − 0.410·95-s + 0.203·97-s + 0.597·101-s − 1.57·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(2880\)    =    \(2^{6} \cdot 3^{2} \cdot 5\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{2880} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 2880,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.226082691547122214268246790637, −7.895948826452068654414613330540, −6.67942837687841564784020549818, −6.22655665853440526065692294121, −5.23711582901803702398619833899, −4.61637786041227006233511289358, −3.49383942289735640414957225807, −2.56115381334337850510181459393, −1.63003304315535854790808215647, 0, 1.63003304315535854790808215647, 2.56115381334337850510181459393, 3.49383942289735640414957225807, 4.61637786041227006233511289358, 5.23711582901803702398619833899, 6.22655665853440526065692294121, 6.67942837687841564784020549818, 7.895948826452068654414613330540, 8.226082691547122214268246790637

Graph of the $Z$-function along the critical line