Properties

Degree $2$
Conductor $288$
Sign $0.697 + 0.716i$
Motivic weight $2$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.98 − 0.229i)2-s + (3.89 − 0.912i)4-s + (−4.18 − 1.73i)5-s + (3.93 − 3.93i)7-s + (7.52 − 2.70i)8-s + (−8.72 − 2.48i)10-s + (14.2 + 5.89i)11-s + (0.454 − 0.188i)13-s + (6.90 − 8.71i)14-s + (14.3 − 7.11i)16-s − 26.5i·17-s + (−7.25 − 17.5i)19-s + (−17.8 − 2.93i)20-s + (29.6 + 8.44i)22-s + (−0.775 − 0.775i)23-s + ⋯
L(s)  = 1  + (0.993 − 0.114i)2-s + (0.973 − 0.228i)4-s + (−0.837 − 0.346i)5-s + (0.561 − 0.561i)7-s + (0.940 − 0.338i)8-s + (−0.872 − 0.248i)10-s + (1.29 + 0.536i)11-s + (0.0349 − 0.0144i)13-s + (0.493 − 0.622i)14-s + (0.895 − 0.444i)16-s − 1.56i·17-s + (−0.381 − 0.921i)19-s + (−0.894 − 0.146i)20-s + (1.34 + 0.383i)22-s + (−0.0337 − 0.0337i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(288\)    =    \(2^{5} \cdot 3^{2}\)
Sign: $0.697 + 0.716i$
Motivic weight: \(2\)
Character: $\chi_{288} (91, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 288,\ (\ :1),\ 0.697 + 0.716i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.69693 - 1.13831i\)
\(L(\frac12)\) \(\approx\) \(2.69693 - 1.13831i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.98 + 0.229i)T \)
3 \( 1 \)
good5 \( 1 + (4.18 + 1.73i)T + (17.6 + 17.6i)T^{2} \)
7 \( 1 + (-3.93 + 3.93i)T - 49iT^{2} \)
11 \( 1 + (-14.2 - 5.89i)T + (85.5 + 85.5i)T^{2} \)
13 \( 1 + (-0.454 + 0.188i)T + (119. - 119. i)T^{2} \)
17 \( 1 + 26.5iT - 289T^{2} \)
19 \( 1 + (7.25 + 17.5i)T + (-255. + 255. i)T^{2} \)
23 \( 1 + (0.775 + 0.775i)T + 529iT^{2} \)
29 \( 1 + (-17.9 - 43.4i)T + (-594. + 594. i)T^{2} \)
31 \( 1 - 39.6iT - 961T^{2} \)
37 \( 1 + (-36.4 - 15.1i)T + (968. + 968. i)T^{2} \)
41 \( 1 + (38.9 - 38.9i)T - 1.68e3iT^{2} \)
43 \( 1 + (14.2 + 5.91i)T + (1.30e3 + 1.30e3i)T^{2} \)
47 \( 1 + 62.1T + 2.20e3T^{2} \)
53 \( 1 + (11.4 - 27.7i)T + (-1.98e3 - 1.98e3i)T^{2} \)
59 \( 1 + (-5.30 + 12.8i)T + (-2.46e3 - 2.46e3i)T^{2} \)
61 \( 1 + (-14.1 - 34.1i)T + (-2.63e3 + 2.63e3i)T^{2} \)
67 \( 1 + (-26.1 + 10.8i)T + (3.17e3 - 3.17e3i)T^{2} \)
71 \( 1 + (17.7 - 17.7i)T - 5.04e3iT^{2} \)
73 \( 1 + (-12.8 + 12.8i)T - 5.32e3iT^{2} \)
79 \( 1 + 144.T + 6.24e3T^{2} \)
83 \( 1 + (-10.9 - 26.5i)T + (-4.87e3 + 4.87e3i)T^{2} \)
89 \( 1 + (-5.92 - 5.92i)T + 7.92e3iT^{2} \)
97 \( 1 - 66.9T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.66651112842830029826611582542, −10.96238833073752866178439450847, −9.713547282150187651876819394366, −8.459804917932411075727043261483, −7.24595142181438352945088981177, −6.66037788163393052325940791388, −4.89315192841635336410853924930, −4.42295451707215493530238367249, −3.12899978904042590444170354637, −1.26313060683646985789981225109, 1.89158885002274609009535184186, 3.60409649774622693194151094958, 4.23764589073776621616117818124, 5.80095479129065313083092091369, 6.48962201874057862459821145219, 7.85287391237840665268116198866, 8.454253338227126782388969826500, 10.07196071950646114065484343253, 11.34714612832214255458931843065, 11.61307764446608533810320479076

Graph of the $Z$-function along the critical line