Properties

Label 8-288e4-1.1-c1e4-0-4
Degree $8$
Conductor $6879707136$
Sign $1$
Analytic cond. $27.9690$
Root an. cond. $1.51647$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·7-s − 3·9-s + 20·17-s + 4·23-s − 6·25-s − 8·31-s + 10·41-s − 12·47-s + 30·49-s − 24·63-s + 24·71-s + 36·73-s − 28·79-s − 56·89-s − 2·97-s − 12·103-s − 12·113-s + 160·119-s − 13·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 60·153-s + 157-s + ⋯
L(s)  = 1  + 3.02·7-s − 9-s + 4.85·17-s + 0.834·23-s − 6/5·25-s − 1.43·31-s + 1.56·41-s − 1.75·47-s + 30/7·49-s − 3.02·63-s + 2.84·71-s + 4.21·73-s − 3.15·79-s − 5.93·89-s − 0.203·97-s − 1.18·103-s − 1.12·113-s + 14.6·119-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 4.85·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(27.9690\)
Root analytic conductor: \(1.51647\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.266786116\)
\(L(\frac12)\) \(\approx\) \(3.266786116\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
good5$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + T + p T^{2} )^{2} \)
11$C_2^3$ \( 1 + 13 T^{2} + 48 T^{4} + 13 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$$\times$$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )( 1 + 23 T^{2} + p^{2} T^{4} ) \)
17$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 2 T - 19 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 - 5 T - 16 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 - 35 T^{2} - 624 T^{4} - 35 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + 6 T - 11 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{4} \)
59$C_2^3$ \( 1 + 117 T^{2} + 10208 T^{4} + 117 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$$\times$$C_2^2$ \( ( 1 - 10 T + 39 T^{2} - 10 p T^{3} + p^{2} T^{4} )( 1 + 10 T + 39 T^{2} + 10 p T^{3} + p^{2} T^{4} ) \)
67$C_2^3$ \( 1 + 125 T^{2} + 11136 T^{4} + 125 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 9 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 14 T + 117 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 150 T^{2} + 15611 T^{4} + 150 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2$ \( ( 1 + 14 T + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + T - 96 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.364420091481086857033298682894, −8.211342447869230299336353052980, −7.980450472901583478422382616210, −7.941798803842492948921589613286, −7.76504140347977063934648337782, −7.60548936776556772389054915728, −7.07298204724172767356251225288, −6.84576408955375056866623468585, −6.71076027218495004892389958893, −5.83158550300280307657623435153, −5.66957857793815988515310100919, −5.63498325059582975640730499846, −5.57972333927483068417834452888, −5.10559013535950030807782824660, −4.90963042318435002805189605630, −4.68312607265359988240416812973, −4.04041462531186537064021921306, −3.72200493391361527989947976254, −3.70463821838737738958723908868, −3.01510883609160373228349786580, −2.85041523031160849579831399260, −2.29619938113364418040097790512, −1.65162219993007474554059115777, −1.38447067023982624408387265594, −1.05769419556521366685285669188, 1.05769419556521366685285669188, 1.38447067023982624408387265594, 1.65162219993007474554059115777, 2.29619938113364418040097790512, 2.85041523031160849579831399260, 3.01510883609160373228349786580, 3.70463821838737738958723908868, 3.72200493391361527989947976254, 4.04041462531186537064021921306, 4.68312607265359988240416812973, 4.90963042318435002805189605630, 5.10559013535950030807782824660, 5.57972333927483068417834452888, 5.63498325059582975640730499846, 5.66957857793815988515310100919, 5.83158550300280307657623435153, 6.71076027218495004892389958893, 6.84576408955375056866623468585, 7.07298204724172767356251225288, 7.60548936776556772389054915728, 7.76504140347977063934648337782, 7.941798803842492948921589613286, 7.980450472901583478422382616210, 8.211342447869230299336353052980, 8.364420091481086857033298682894

Graph of the $Z$-function along the critical line