Properties

Label 8-2850e4-1.1-c1e4-0-1
Degree $8$
Conductor $6.598\times 10^{13}$
Sign $1$
Analytic cond. $268217.$
Root an. cond. $4.77046$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·9-s + 4·11-s + 3·16-s + 4·19-s + 28·29-s − 4·31-s + 4·36-s − 8·44-s + 8·49-s − 8·59-s − 4·61-s − 4·64-s − 8·71-s − 8·76-s − 4·79-s + 3·81-s + 4·89-s − 8·99-s + 8·101-s − 56·109-s − 56·116-s − 14·121-s + 8·124-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 4-s − 2/3·9-s + 1.20·11-s + 3/4·16-s + 0.917·19-s + 5.19·29-s − 0.718·31-s + 2/3·36-s − 1.20·44-s + 8/7·49-s − 1.04·59-s − 0.512·61-s − 1/2·64-s − 0.949·71-s − 0.917·76-s − 0.450·79-s + 1/3·81-s + 0.423·89-s − 0.804·99-s + 0.796·101-s − 5.36·109-s − 5.19·116-s − 1.27·121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(268217.\)
Root analytic conductor: \(4.77046\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.396033547\)
\(L(\frac12)\) \(\approx\) \(3.396033547\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
19$C_1$ \( ( 1 - T )^{4} \)
good7$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
11$D_{4}$ \( ( 1 - 2 T + 13 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 24 T^{2} + 322 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 16 T^{2} + 2 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 10 T^{2} + 923 T^{4} - 10 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 14 T + 97 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 2 T + 23 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 42 T^{2} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 80 T^{2} + 3858 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 142 T^{2} + 9659 T^{4} - 142 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 4 T + 32 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 2 T + 113 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 70 T^{2} + 6963 T^{4} - 70 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 4 T + 136 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 145 T^{2} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 2 T + 119 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 134 T^{2} + 15027 T^{4} - 134 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 2 T + 139 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 8 T^{2} - 17166 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.25490105919468537140233726145, −6.07624449038350617720235391477, −5.84892429667050632414652978631, −5.47088735701909635042179965730, −5.29542610633031579838208097504, −5.19953663323210909584148693012, −5.15343432393113033917436496034, −4.65395734749879077506681413749, −4.61067458523303326128441724806, −4.40572128027989097236587446500, −4.14084014610599374601723425945, −3.87040163386228343598810102587, −3.86070866446741393857175847510, −3.52198834978176609011506879076, −3.20594123463031410304060779007, −2.83460528379929129048581450809, −2.74337835302311460447436284519, −2.68796088148085169398372251055, −2.50854699029957035812777679753, −1.76961698298966174034915716717, −1.54002949925484883699636685543, −1.24870793459047439528013488688, −1.14311637964762292373356444725, −0.62169634352768602013473274433, −0.38470872338224236201417881905, 0.38470872338224236201417881905, 0.62169634352768602013473274433, 1.14311637964762292373356444725, 1.24870793459047439528013488688, 1.54002949925484883699636685543, 1.76961698298966174034915716717, 2.50854699029957035812777679753, 2.68796088148085169398372251055, 2.74337835302311460447436284519, 2.83460528379929129048581450809, 3.20594123463031410304060779007, 3.52198834978176609011506879076, 3.86070866446741393857175847510, 3.87040163386228343598810102587, 4.14084014610599374601723425945, 4.40572128027989097236587446500, 4.61067458523303326128441724806, 4.65395734749879077506681413749, 5.15343432393113033917436496034, 5.19953663323210909584148693012, 5.29542610633031579838208097504, 5.47088735701909635042179965730, 5.84892429667050632414652978631, 6.07624449038350617720235391477, 6.25490105919468537140233726145

Graph of the $Z$-function along the critical line