Properties

Label 4-2800e2-1.1-c1e2-0-31
Degree $4$
Conductor $7840000$
Sign $1$
Analytic cond. $499.885$
Root an. cond. $4.72843$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s − 6·11-s + 4·19-s − 18·29-s − 16·31-s − 12·41-s − 49-s − 20·61-s − 30·71-s − 14·79-s − 5·81-s + 24·89-s − 12·99-s + 36·101-s + 14·109-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 8·171-s + ⋯
L(s)  = 1  + 2/3·9-s − 1.80·11-s + 0.917·19-s − 3.34·29-s − 2.87·31-s − 1.87·41-s − 1/7·49-s − 2.56·61-s − 3.56·71-s − 1.57·79-s − 5/9·81-s + 2.54·89-s − 1.20·99-s + 3.58·101-s + 1.34·109-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.611·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7840000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7840000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7840000\)    =    \(2^{8} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(499.885\)
Root analytic conductor: \(4.72843\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 7840000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_2$ \( 1 + T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 49 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 109 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.913383109175226540092754157803, −8.058823179046715229263175723914, −7.60791193984134380716649530272, −7.46181941086381589019593464721, −7.41844493321202473710536866686, −6.91959438946699318308594335924, −6.18628571674854184302972098868, −5.79250126945184046131368402227, −5.49416752198638095866245041426, −5.25885429901591757925485511255, −4.70804525865876651982136532390, −4.35608370375259282853289871296, −3.65526627989818650491721248992, −3.31419399824660808740319286938, −3.10430847783344829519098190044, −2.16878031623773248339956403444, −1.84758571978563807409937852785, −1.44325447619435435747505969879, 0, 0, 1.44325447619435435747505969879, 1.84758571978563807409937852785, 2.16878031623773248339956403444, 3.10430847783344829519098190044, 3.31419399824660808740319286938, 3.65526627989818650491721248992, 4.35608370375259282853289871296, 4.70804525865876651982136532390, 5.25885429901591757925485511255, 5.49416752198638095866245041426, 5.79250126945184046131368402227, 6.18628571674854184302972098868, 6.91959438946699318308594335924, 7.41844493321202473710536866686, 7.46181941086381589019593464721, 7.60791193984134380716649530272, 8.058823179046715229263175723914, 8.913383109175226540092754157803

Graph of the $Z$-function along the critical line