Properties

Label 4-2800e2-1.1-c1e2-0-28
Degree $4$
Conductor $7840000$
Sign $1$
Analytic cond. $499.885$
Root an. cond. $4.72843$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 3·9-s − 7·11-s − 3·13-s − 5·17-s − 2·19-s + 2·21-s + 2·23-s − 8·27-s − 3·29-s + 16·31-s + 7·33-s + 4·37-s + 3·39-s + 2·41-s − 6·43-s + 3·47-s + 3·49-s + 5·51-s − 10·53-s + 2·57-s − 16·59-s + 6·61-s − 6·63-s − 8·67-s − 2·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 9-s − 2.11·11-s − 0.832·13-s − 1.21·17-s − 0.458·19-s + 0.436·21-s + 0.417·23-s − 1.53·27-s − 0.557·29-s + 2.87·31-s + 1.21·33-s + 0.657·37-s + 0.480·39-s + 0.312·41-s − 0.914·43-s + 0.437·47-s + 3/7·49-s + 0.700·51-s − 1.37·53-s + 0.264·57-s − 2.08·59-s + 0.768·61-s − 0.755·63-s − 0.977·67-s − 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7840000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7840000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7840000\)    =    \(2^{8} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(499.885\)
Root analytic conductor: \(4.72843\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 7840000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_1$ \( ( 1 + T )^{2} \)
good3$C_2^2$ \( 1 + T - 2 T^{2} + p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 7 T + 26 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 3 T + 20 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 5 T + 32 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 2 T + 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 2 T + 14 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 3 T + 52 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$D_{4}$ \( 1 - 2 T + 50 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 6 T + 62 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 3 T + 22 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 10 T + 98 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
61$D_{4}$ \( 1 - 6 T + 98 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 + 13 T + 126 T^{2} + 13 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 4 T + 38 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 18 T + 226 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 9 T + 8 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.469385746175580600078341961372, −8.224722954226784453582741987439, −7.76821946477161216257359517067, −7.34845541634258764100941244028, −7.32340715727196821072620736367, −6.50414034821844836720647404901, −6.36421937294974870428384319260, −6.11524050565479337940016802101, −5.35012547877116992995582514307, −5.20361005409404579303554418881, −4.61166037926019937927320229382, −4.44206733412735850198227956170, −4.02007344237616772428912601475, −3.14780636996654605442263346659, −2.83895993711404022172942157477, −2.46051753898991962673161795865, −1.91254589019427177590593686500, −1.11708032024989274593662038403, 0, 0, 1.11708032024989274593662038403, 1.91254589019427177590593686500, 2.46051753898991962673161795865, 2.83895993711404022172942157477, 3.14780636996654605442263346659, 4.02007344237616772428912601475, 4.44206733412735850198227956170, 4.61166037926019937927320229382, 5.20361005409404579303554418881, 5.35012547877116992995582514307, 6.11524050565479337940016802101, 6.36421937294974870428384319260, 6.50414034821844836720647404901, 7.32340715727196821072620736367, 7.34845541634258764100941244028, 7.76821946477161216257359517067, 8.224722954226784453582741987439, 8.469385746175580600078341961372

Graph of the $Z$-function along the critical line