Properties

Label 4-2800e2-1.1-c0e2-0-3
Degree $4$
Conductor $7840000$
Sign $1$
Analytic cond. $1.95267$
Root an. cond. $1.18210$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s + 2·11-s + 2·29-s − 49-s + 2·71-s − 2·79-s + 3·81-s − 4·99-s + 2·109-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 2·9-s + 2·11-s + 2·29-s − 49-s + 2·71-s − 2·79-s + 3·81-s − 4·99-s + 2·109-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7840000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7840000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7840000\)    =    \(2^{8} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.95267\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7840000,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.263456477\)
\(L(\frac12)\) \(\approx\) \(1.263456477\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_2$ \( 1 + T^{2} \)
good3$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_2$ \( ( 1 - T + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2^2$ \( 1 - T^{2} + T^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2^2$ \( 1 - T^{2} + T^{4} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_2$ \( ( 1 - T + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_2$ \( ( 1 + T + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.135171382778324257841071363221, −8.693740333959821457089854034731, −8.435144917375820674621288927322, −8.278528101102618437396936855942, −7.77869830947886379175377196948, −7.20956730405814256119774091571, −6.64852555617547412689868432602, −6.63805530292510685727169734775, −6.08377653563261130061383429280, −5.87398772597240078277542629910, −5.35715730028588946782641814349, −4.88573245467035886049476879301, −4.47416567204505404622181264149, −4.04458311518782850130674061207, −3.33801673320425637122490388489, −3.29801930707782801499375189148, −2.64203220024062363062844504018, −2.15721943027365585074170429905, −1.43015267771404055818844501684, −0.76433077461888908712731207369, 0.76433077461888908712731207369, 1.43015267771404055818844501684, 2.15721943027365585074170429905, 2.64203220024062363062844504018, 3.29801930707782801499375189148, 3.33801673320425637122490388489, 4.04458311518782850130674061207, 4.47416567204505404622181264149, 4.88573245467035886049476879301, 5.35715730028588946782641814349, 5.87398772597240078277542629910, 6.08377653563261130061383429280, 6.63805530292510685727169734775, 6.64852555617547412689868432602, 7.20956730405814256119774091571, 7.77869830947886379175377196948, 8.278528101102618437396936855942, 8.435144917375820674621288927322, 8.693740333959821457089854034731, 9.135171382778324257841071363221

Graph of the $Z$-function along the critical line