Properties

Label 6-280e3-1.1-c5e3-0-1
Degree $6$
Conductor $21952000$
Sign $-1$
Analytic cond. $90564.0$
Root an. cond. $6.70130$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s − 75·5-s + 147·7-s − 242·9-s − 578·11-s + 80·13-s − 450·15-s − 1.24e3·17-s + 944·19-s + 882·21-s + 1.09e3·23-s + 3.75e3·25-s − 3.01e3·27-s + 1.86e3·29-s − 6.62e3·31-s − 3.46e3·33-s − 1.10e4·35-s − 4.05e3·37-s + 480·39-s − 9.60e3·41-s − 1.23e4·43-s + 1.81e4·45-s − 4.10e4·47-s + 1.44e4·49-s − 7.46e3·51-s − 3.76e4·53-s + 4.33e4·55-s + ⋯
L(s)  = 1  + 0.384·3-s − 1.34·5-s + 1.13·7-s − 0.995·9-s − 1.44·11-s + 0.131·13-s − 0.516·15-s − 1.04·17-s + 0.599·19-s + 0.436·21-s + 0.432·23-s + 6/5·25-s − 0.795·27-s + 0.412·29-s − 1.23·31-s − 0.554·33-s − 1.52·35-s − 0.487·37-s + 0.0505·39-s − 0.892·41-s − 1.01·43-s + 1.33·45-s − 2.70·47-s + 6/7·49-s − 0.401·51-s − 1.83·53-s + 1.93·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21952000 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21952000 ^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(21952000\)    =    \(2^{9} \cdot 5^{3} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(90564.0\)
Root analytic conductor: \(6.70130\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 21952000,\ (\ :5/2, 5/2, 5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + p^{2} T )^{3} \)
7$C_1$ \( ( 1 - p^{2} T )^{3} \)
good3$S_4\times C_2$ \( 1 - 2 p T + 278 T^{2} - 4 p^{3} T^{3} + 278 p^{5} T^{4} - 2 p^{11} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 + 578 T + 532546 T^{2} + 176414024 T^{3} + 532546 p^{5} T^{4} + 578 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 - 80 T + 659912 T^{2} + 69089614 T^{3} + 659912 p^{5} T^{4} - 80 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 + 1244 T + 3825572 T^{2} + 2880760926 T^{3} + 3825572 p^{5} T^{4} + 1244 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 - 944 T + 2554693 T^{2} - 6396404800 T^{3} + 2554693 p^{5} T^{4} - 944 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 - 1096 T + 3215521 T^{2} + 17254885520 T^{3} + 3215521 p^{5} T^{4} - 1096 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 - 1868 T + 58940420 T^{2} - 73529393886 T^{3} + 58940420 p^{5} T^{4} - 1868 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 6620 T + 52679501 T^{2} + 362328925640 T^{3} + 52679501 p^{5} T^{4} + 6620 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 + 4058 T + 205979659 T^{2} + 547359183868 T^{3} + 205979659 p^{5} T^{4} + 4058 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 + 9602 T + 316168131 T^{2} + 1894282084292 T^{3} + 316168131 p^{5} T^{4} + 9602 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 + 12340 T + 391749389 T^{2} + 3626493136456 T^{3} + 391749389 p^{5} T^{4} + 12340 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 41026 T + 1167350978 T^{2} + 20142082962996 T^{3} + 1167350978 p^{5} T^{4} + 41026 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 + 37610 T + 1005378735 T^{2} + 17489736821828 T^{3} + 1005378735 p^{5} T^{4} + 37610 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 37664 T + 2381135649 T^{2} + 54217626162368 T^{3} + 2381135649 p^{5} T^{4} + 37664 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 + 8386 T + 2039747215 T^{2} + 9378692995412 T^{3} + 2039747215 p^{5} T^{4} + 8386 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 - 69340 T + 4935851017 T^{2} - 187941040013288 T^{3} + 4935851017 p^{5} T^{4} - 69340 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 + 34016 T + 5701813173 T^{2} + 123081918180416 T^{3} + 5701813173 p^{5} T^{4} + 34016 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 45314 T + 5765764071 T^{2} + 184796595354940 T^{3} + 5765764071 p^{5} T^{4} + 45314 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 - 1382 T + 4274914590 T^{2} - 124886419818268 T^{3} + 4274914590 p^{5} T^{4} - 1382 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 + 10128 T + 8988161657 T^{2} + 121013923466592 T^{3} + 8988161657 p^{5} T^{4} + 10128 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 222810 T + 30045397875 T^{2} + 2663428337517876 T^{3} + 30045397875 p^{5} T^{4} + 222810 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 + 159476 T + 27439536380 T^{2} + 2312911594549598 T^{3} + 27439536380 p^{5} T^{4} + 159476 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.47696733526100514817739191740, −9.815722166978925485791940218576, −9.504114987706198315668413648122, −9.335148166672766033613162727682, −8.592697966303295204807136641661, −8.522591873219258337790262324755, −8.359791248840447739601158471513, −7.981151730705663041948916114223, −7.74740515054995063642601238045, −7.45667061099067271546080410523, −6.98133406118047886832108406458, −6.53872771581583984915250523780, −6.47228051255136927213197238756, −5.49595764317791957771514262947, −5.33314083957624770944359208082, −5.21657298058582394077157888261, −4.70986619520904121934010860743, −4.12999412858824390923462679561, −4.12265324513195603555761943554, −3.11231258648179354421980482746, −3.09685932900926104405670822259, −2.88725921697818646114356587433, −2.00488740968714947834219753766, −1.65508158090314240164689945335, −1.19399614153027410820455406148, 0, 0, 0, 1.19399614153027410820455406148, 1.65508158090314240164689945335, 2.00488740968714947834219753766, 2.88725921697818646114356587433, 3.09685932900926104405670822259, 3.11231258648179354421980482746, 4.12265324513195603555761943554, 4.12999412858824390923462679561, 4.70986619520904121934010860743, 5.21657298058582394077157888261, 5.33314083957624770944359208082, 5.49595764317791957771514262947, 6.47228051255136927213197238756, 6.53872771581583984915250523780, 6.98133406118047886832108406458, 7.45667061099067271546080410523, 7.74740515054995063642601238045, 7.981151730705663041948916114223, 8.359791248840447739601158471513, 8.522591873219258337790262324755, 8.592697966303295204807136641661, 9.335148166672766033613162727682, 9.504114987706198315668413648122, 9.815722166978925485791940218576, 10.47696733526100514817739191740

Graph of the $Z$-function along the critical line