Properties

Label 2-2793-1.1-c1-0-56
Degree $2$
Conductor $2793$
Sign $-1$
Analytic cond. $22.3022$
Root an. cond. $4.72252$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s − 5-s + 2·6-s + 9-s + 2·10-s − 3·11-s − 2·12-s + 6·13-s + 15-s − 4·16-s − 3·17-s − 2·18-s + 19-s − 2·20-s + 6·22-s + 4·23-s − 4·25-s − 12·26-s − 27-s − 10·29-s − 2·30-s − 2·31-s + 8·32-s + 3·33-s + 6·34-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s − 0.447·5-s + 0.816·6-s + 1/3·9-s + 0.632·10-s − 0.904·11-s − 0.577·12-s + 1.66·13-s + 0.258·15-s − 16-s − 0.727·17-s − 0.471·18-s + 0.229·19-s − 0.447·20-s + 1.27·22-s + 0.834·23-s − 4/5·25-s − 2.35·26-s − 0.192·27-s − 1.85·29-s − 0.365·30-s − 0.359·31-s + 1.41·32-s + 0.522·33-s + 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2793\)    =    \(3 \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(22.3022\)
Root analytic conductor: \(4.72252\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2793,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
7 \( 1 \)
19 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.357184272561083520991980228987, −7.85299335680438147432692264086, −7.18234843296435268235290172228, −6.30105136312846076960884489554, −5.52530791646186639803841398771, −4.46736285095239332850180583467, −3.57770329247678768387214464588, −2.20297247115601396634176470352, −1.11036730796571501295563137388, 0, 1.11036730796571501295563137388, 2.20297247115601396634176470352, 3.57770329247678768387214464588, 4.46736285095239332850180583467, 5.52530791646186639803841398771, 6.30105136312846076960884489554, 7.18234843296435268235290172228, 7.85299335680438147432692264086, 8.357184272561083520991980228987

Graph of the $Z$-function along the critical line