| L(s) = 1 | − 2·2-s − 3-s + 2·4-s − 5-s + 2·6-s + 9-s + 2·10-s − 3·11-s − 2·12-s + 6·13-s + 15-s − 4·16-s − 3·17-s − 2·18-s + 19-s − 2·20-s + 6·22-s + 4·23-s − 4·25-s − 12·26-s − 27-s − 10·29-s − 2·30-s − 2·31-s + 8·32-s + 3·33-s + 6·34-s + ⋯ |
| L(s) = 1 | − 1.41·2-s − 0.577·3-s + 4-s − 0.447·5-s + 0.816·6-s + 1/3·9-s + 0.632·10-s − 0.904·11-s − 0.577·12-s + 1.66·13-s + 0.258·15-s − 16-s − 0.727·17-s − 0.471·18-s + 0.229·19-s − 0.447·20-s + 1.27·22-s + 0.834·23-s − 4/5·25-s − 2.35·26-s − 0.192·27-s − 1.85·29-s − 0.365·30-s − 0.359·31-s + 1.41·32-s + 0.522·33-s + 1.02·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 3 | \( 1 + T \) | |
| 7 | \( 1 \) | |
| 19 | \( 1 - T \) | |
| good | 2 | \( 1 + p T + p T^{2} \) | 1.2.c |
| 5 | \( 1 + T + p T^{2} \) | 1.5.b |
| 11 | \( 1 + 3 T + p T^{2} \) | 1.11.d |
| 13 | \( 1 - 6 T + p T^{2} \) | 1.13.ag |
| 17 | \( 1 + 3 T + p T^{2} \) | 1.17.d |
| 23 | \( 1 - 4 T + p T^{2} \) | 1.23.ae |
| 29 | \( 1 + 10 T + p T^{2} \) | 1.29.k |
| 31 | \( 1 + 2 T + p T^{2} \) | 1.31.c |
| 37 | \( 1 - 8 T + p T^{2} \) | 1.37.ai |
| 41 | \( 1 - 8 T + p T^{2} \) | 1.41.ai |
| 43 | \( 1 + T + p T^{2} \) | 1.43.b |
| 47 | \( 1 + 3 T + p T^{2} \) | 1.47.d |
| 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g |
| 59 | \( 1 + p T^{2} \) | 1.59.a |
| 61 | \( 1 + 7 T + p T^{2} \) | 1.61.h |
| 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai |
| 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am |
| 73 | \( 1 - 11 T + p T^{2} \) | 1.73.al |
| 79 | \( 1 + p T^{2} \) | 1.79.a |
| 83 | \( 1 + 4 T + p T^{2} \) | 1.83.e |
| 89 | \( 1 + 10 T + p T^{2} \) | 1.89.k |
| 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.357184272561083520991980228987, −7.85299335680438147432692264086, −7.18234843296435268235290172228, −6.30105136312846076960884489554, −5.52530791646186639803841398771, −4.46736285095239332850180583467, −3.57770329247678768387214464588, −2.20297247115601396634176470352, −1.11036730796571501295563137388, 0,
1.11036730796571501295563137388, 2.20297247115601396634176470352, 3.57770329247678768387214464588, 4.46736285095239332850180583467, 5.52530791646186639803841398771, 6.30105136312846076960884489554, 7.18234843296435268235290172228, 7.85299335680438147432692264086, 8.357184272561083520991980228987