Properties

Label 8-2760e4-1.1-c1e4-0-0
Degree $8$
Conductor $5.803\times 10^{13}$
Sign $1$
Analytic cond. $235909.$
Root an. cond. $4.69454$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 4·5-s + 10·9-s − 2·13-s + 16·15-s + 2·17-s − 6·19-s + 4·23-s + 10·25-s − 20·27-s + 4·29-s − 6·31-s − 4·37-s + 8·39-s + 8·41-s − 20·43-s − 40·45-s + 6·47-s − 9·49-s − 8·51-s − 4·53-s + 24·57-s − 4·59-s − 4·61-s + 8·65-s − 26·67-s − 16·69-s + ⋯
L(s)  = 1  − 2.30·3-s − 1.78·5-s + 10/3·9-s − 0.554·13-s + 4.13·15-s + 0.485·17-s − 1.37·19-s + 0.834·23-s + 2·25-s − 3.84·27-s + 0.742·29-s − 1.07·31-s − 0.657·37-s + 1.28·39-s + 1.24·41-s − 3.04·43-s − 5.96·45-s + 0.875·47-s − 9/7·49-s − 1.12·51-s − 0.549·53-s + 3.17·57-s − 0.520·59-s − 0.512·61-s + 0.992·65-s − 3.17·67-s − 1.92·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 5^{4} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(235909.\)
Root analytic conductor: \(4.69454\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 5^{4} \cdot 23^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{4} \)
5$C_1$ \( ( 1 + T )^{4} \)
23$C_1$ \( ( 1 - T )^{4} \)
good7$C_2 \wr S_4$ \( 1 + 9 T^{2} - 6 T^{3} + 36 T^{4} - 6 p T^{5} + 9 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 2 p T^{2} + 12 T^{3} + 322 T^{4} + 12 p T^{5} + 2 p^{3} T^{6} + p^{4} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 2 T + 14 T^{2} + 22 T^{3} + 322 T^{4} + 22 p T^{5} + 14 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 2 T - 3 T^{2} - 44 T^{3} + 344 T^{4} - 44 p T^{5} - 3 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 6 T + 50 T^{2} + 230 T^{3} + 1434 T^{4} + 230 p T^{5} + 50 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 4 T + 41 T^{2} + 52 T^{3} + 532 T^{4} + 52 p T^{5} + 41 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 6 T + 113 T^{2} + 454 T^{3} + 4956 T^{4} + 454 p T^{5} + 113 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 4 T + 53 T^{2} + 298 T^{3} + 3288 T^{4} + 298 p T^{5} + 53 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 8 T + 153 T^{2} - 780 T^{3} + 8804 T^{4} - 780 p T^{5} + 153 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 20 T + 240 T^{2} + 2116 T^{3} + 14894 T^{4} + 2116 p T^{5} + 240 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 6 T + 162 T^{2} - 734 T^{3} + 11066 T^{4} - 734 p T^{5} + 162 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 4 T + 65 T^{2} + 812 T^{3} + 2740 T^{4} + 812 p T^{5} + 65 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 4 T + 161 T^{2} + 792 T^{3} + 12356 T^{4} + 792 p T^{5} + 161 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 4 T + 182 T^{2} + 368 T^{3} + 14362 T^{4} + 368 p T^{5} + 182 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 26 T + 409 T^{2} + 4326 T^{3} + 38852 T^{4} + 4326 p T^{5} + 409 p^{2} T^{6} + 26 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 249 T^{2} + 96 T^{3} + 25212 T^{4} + 96 p T^{5} + 249 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 18 T + 374 T^{2} + 3934 T^{3} + 43794 T^{4} + 3934 p T^{5} + 374 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 18 T + 260 T^{2} + 2730 T^{3} + 29110 T^{4} + 2730 p T^{5} + 260 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 26 T + 441 T^{2} + 4988 T^{3} + 50252 T^{4} + 4988 p T^{5} + 441 p^{2} T^{6} + 26 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2 \wr S_4$ \( 1 - 14 T + 380 T^{2} - 3690 T^{3} + 51734 T^{4} - 3690 p T^{5} + 380 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 12 T + 344 T^{2} + 3364 T^{3} + 47982 T^{4} + 3364 p T^{5} + 344 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.63894232847110506686227555604, −6.41564898954237409595079314646, −6.18554474053802302852025575365, −6.10039100263060776877884737575, −5.99110806161098016085784450967, −5.44008721931475139116523192308, −5.41202698053180082276466166372, −5.26474297359390919074306434316, −5.09098790663885614863503406183, −4.71036397242113196717869872928, −4.55180035448100883605421666169, −4.53261424905023199767286099425, −4.36971010235525083865991362688, −3.99224650779977918821725671012, −3.64186745344228998441270054467, −3.61938037826117689607176968170, −3.59222980042004935753254514904, −2.84250098334476302075560228797, −2.75164082853610513562628053135, −2.70799578435897261569244533211, −2.34458977486626211746305060891, −1.56529592758404973736493147687, −1.35530742836390379693247455715, −1.32242365775724753679596108695, −1.26051612086382796561745648288, 0, 0, 0, 0, 1.26051612086382796561745648288, 1.32242365775724753679596108695, 1.35530742836390379693247455715, 1.56529592758404973736493147687, 2.34458977486626211746305060891, 2.70799578435897261569244533211, 2.75164082853610513562628053135, 2.84250098334476302075560228797, 3.59222980042004935753254514904, 3.61938037826117689607176968170, 3.64186745344228998441270054467, 3.99224650779977918821725671012, 4.36971010235525083865991362688, 4.53261424905023199767286099425, 4.55180035448100883605421666169, 4.71036397242113196717869872928, 5.09098790663885614863503406183, 5.26474297359390919074306434316, 5.41202698053180082276466166372, 5.44008721931475139116523192308, 5.99110806161098016085784450967, 6.10039100263060776877884737575, 6.18554474053802302852025575365, 6.41564898954237409595079314646, 6.63894232847110506686227555604

Graph of the $Z$-function along the critical line