Properties

Label 8-2736e4-1.1-c1e4-0-17
Degree $8$
Conductor $5.604\times 10^{13}$
Sign $1$
Analytic cond. $227810.$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·7-s + 12·19-s + 16·25-s − 16·43-s + 12·49-s + 32·61-s + 24·73-s + 40·121-s + 127-s + 131-s + 96·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 28·169-s + 173-s + 128·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 3.02·7-s + 2.75·19-s + 16/5·25-s − 2.43·43-s + 12/7·49-s + 4.09·61-s + 2.80·73-s + 3.63·121-s + 0.0887·127-s + 0.0873·131-s + 8.32·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2.15·169-s + 0.0760·173-s + 9.67·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(227810.\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(13.40785186\)
\(L(\frac12)\) \(\approx\) \(13.40785186\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 16 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 164 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 154 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.21833839051215522768527217794, −6.10381519300904640466639238464, −5.74101773079112090858776722990, −5.38769261356314720497995424846, −5.31209066896230370925768721154, −5.02603679095772538397602354344, −5.00856520536625212872518152796, −5.00220754565280265466849498750, −4.88977620412708082413290471036, −4.47942923083300307876074944368, −4.17701121121912962874466732426, −4.04591527062066017000191404609, −3.71451424182130498543812970706, −3.39305720260309779602237103757, −3.12483124892572180294816659802, −3.09018964519109165233542858563, −2.96168702141888287387910092955, −2.30105106626850360971507890753, −2.22593475380799848415361888597, −1.91539942357036517008013627298, −1.61939724843390129630547279697, −1.45092584749131381905973905005, −0.968845206439867045990154352915, −0.913453083315965222952609343829, −0.58761729278060226075713295127, 0.58761729278060226075713295127, 0.913453083315965222952609343829, 0.968845206439867045990154352915, 1.45092584749131381905973905005, 1.61939724843390129630547279697, 1.91539942357036517008013627298, 2.22593475380799848415361888597, 2.30105106626850360971507890753, 2.96168702141888287387910092955, 3.09018964519109165233542858563, 3.12483124892572180294816659802, 3.39305720260309779602237103757, 3.71451424182130498543812970706, 4.04591527062066017000191404609, 4.17701121121912962874466732426, 4.47942923083300307876074944368, 4.88977620412708082413290471036, 5.00220754565280265466849498750, 5.00856520536625212872518152796, 5.02603679095772538397602354344, 5.31209066896230370925768721154, 5.38769261356314720497995424846, 5.74101773079112090858776722990, 6.10381519300904640466639238464, 6.21833839051215522768527217794

Graph of the $Z$-function along the critical line